Chen G, Wang AQ, Zhang Y et al. Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system. Opto-Electron Sci x, 240036 (2025). doi: 10.29026/oes.2025.240036
Citation: Chen G, Wang AQ, Zhang Y et al. Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system. Opto-Electron Sci x, 240036 (2025). doi: 10.29026/oes.2025.240036

Article Open Access

Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system

More Information
  • With the rapid development of lithium batteries, it’s of great significance to ensure the safe use of it. An ultrasound imaging system based on fiber optic ultrasound sensor has been developed to monitor the internal changes of lithium batteries. Based on Fabry-Perot interferometer (FPI) structure which is made of a glass plate and an optical fiber pigtail, the ultrasound imaging system possesses a high sensitivity of 558 mV/kPa at 500 kHz with the noise equivalent pressure (NEP) of only 63.5 mPa. For the frequency response, the ultrasound sensitivity is higher than 13.1 mV/kPa within the frequency range from 50 kHz to 1 MHz. Meanwhile, the battery imaging system based on the proposed sensor has a superior resolution as high as 0.5 mm. The performance of battery safety monitoring is verified, in which three commercial lithium-ion ferrous phosphate/graphite (LFP||Gr) batteries are imaged and the state of health (SOH) for different batteries is obtained. Besides, the wetting process of an anode-free lithium metal batteries (AFLMB) is clearly observed via the proposed system, in which the formation process of the pouch cell is analyzed and the gas-related "unwetting" condition is discovered, representing a significant advancement in battery health monitoring field. In the future, the commercial usage can be realized when sensor array and artificial intelligence technology are adopted.
  • 加载中
  • [1] Marom R, Amalraj SF, Leifer N et al. A review of advanced and practical lithium battery materials. J Mater Chem 21, 9938–9954 (2011). doi: 10.1039/c0jm04225k

    CrossRef Google Scholar

    [2] Xiang JW, Yang LY, Yuan LX et al. Alkali-metal anodes: from lab to market. Joule 3, 2334–2363 (2019). doi: 10.1016/j.joule.2019.07.027

    CrossRef Google Scholar

    [3] Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule 2, 833–845 (2018). doi: 10.1016/j.joule.2018.03.008

    CrossRef Google Scholar

    [4] Li YP, Zhang Y, Li Z et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor. Adv Sci 9, 2203247 (2022). doi: 10.1002/advs.202203247

    CrossRef Google Scholar

    [5] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). doi: 10.1038/35104644

    CrossRef Google Scholar

    [6] Lin XK, Khosravinia K, Hu XS et al. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Prog Energy Combust Sci 87, 100953 (2021). doi: 10.1016/j.pecs.2021.100953

    CrossRef Google Scholar

    [7] Sun ZF, Li M, Xiao BS et al. In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. eTransportation 14, 100203 (2022). doi: 10.1016/j.etran.2022.100203

    CrossRef Google Scholar

    [8] Itou M, Orikasa Y, Gogyo Y et al. Compton scattering imaging of a working battery using synchrotron high-energy X-rays. J Synchrotron Radiat 22, 161–164 (2015). doi: 10.1107/S1600577514024321

    CrossRef Google Scholar

    [9] Chen HS, Yang SQ, Song WL et al. Quantificational 4D visualization and mechanism analysis of inhomogeneous electrolyte wetting. eTransportation 16, 100232 (2023). doi: 10.1016/j.etran.2023.100232

    CrossRef Google Scholar

    [10] Zinth V, von Lüders C, Hofmann M et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction. J Power Sources 271, 152–159 (2014). doi: 10.1016/j.jpowsour.2014.07.168

    CrossRef Google Scholar

    [11] Ziesche RF, Kardjilov N, Kockelmann W et al. Neutron imaging of lithium batteries. Joule 6, 35–52 (2022). doi: 10.1016/j.joule.2021.12.007

    CrossRef Google Scholar

    [12] Schindler S, Bauer M, Petzl M et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells. J Power Sources 304, 170–180 (2016). doi: 10.1016/j.jpowsour.2015.11.044

    CrossRef Google Scholar

    [13] Harlow JE, Glazier SL, Li J et al. Use of asymmetric average charge-and average discharge-voltages as an indicator of the onset of unwanted lithium deposition in lithium-ion cells. J Electrochem Soc 165, A3595–A3601 (2018). doi: 10.1149/2.0011816jes

    CrossRef Google Scholar

    [14] Robinson JB, Darr JA, Eastwood DS et al. Non-uniform temperature distribution in Li-ion batteries during discharge–a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. J Power Sources 252, 51–57 (2014). doi: 10.1016/j.jpowsour.2013.11.059

    CrossRef Google Scholar

    [15] Jiang BQ, Zhao JL. Nanomaterial-functionalized tilted fiber gratings for optical modulation and sensing. J Lightwave Technol 41, 4103–4113 (2023). doi: 10.1109/JLT.2022.3216728

    CrossRef Google Scholar

    [16] Zheng HR, Liu Z, Li SC et al. Pd/WO3 Co-deposited tilted fiber bragg grating for fast hydrogen sensing. IEEE Trans Instrum Meas 74, 3522415 (2025).

    Google Scholar

    [17] Huang JQ, Albero Blanquer L, Bonefacino J et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat Energy 5, 674–683 (2020). doi: 10.1038/s41560-020-0665-y

    CrossRef Google Scholar

    [18] Zhang Y, Li YP, Guo ZZ et al. Health monitoring by optical fiber sensing technology for rechargeable batteries. eScience 4, 100174 (2024). doi: 10.1016/j.esci.2023.100174

    CrossRef Google Scholar

    [19] Zhang Y, Hao SP, Pei F et al. Operando chemo-mechanical evolution in LiNi0.8Co0.1Mn0.1O2 cathodes. Natl Sci Rev 11, nwae254 (2024). doi: 10.1093/nsr/nwae254

    CrossRef Google Scholar

    [20] Matuck LC, Cabrita PD, Pinto JL et al. Customized optical fiber birefringent sensors to multipoint and simultaneous temperature and radial strain tracking of lithium‐ion batteries. Adv Sens Res 2, 2200046 (2023). doi: 10.1002/adsr.202200046

    CrossRef Google Scholar

    [21] Wang RL, Zhang HZ, Liu QY et al. Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nat Commun 13, 547 (2022).

    Google Scholar

    [22] Biazi V, Moreira AC, Pinto JL et al. A particle filter-based virtual sensor for estimating the state of charge and internal temperature of lithium-ion batteries: implementation in a simulated study case. J Energy Storage 61, 106814 (2023). doi: 10.1016/j.est.2023.106814

    CrossRef Google Scholar

    [23] Zhang SX, Li H, Fan CZ et al. Adaptive decentralized AI scheme for signal recognition of distributed sensor systems. Opto-Electron Adv 7, 240119 (2024). doi: 10.29026/oea.2024.240119

    CrossRef Google Scholar

    [24] Davies G, Knehr KW, Van Tassell B et al. State of charge and state of health estimation using electrochemical acoustic time of flight analysis. J Electrochem Soc 164, A2746–A2755 (2017). doi: 10.1149/2.1411712jes

    CrossRef Google Scholar

    [25] Wu Y, Wang YR, Yung WKC et al. Ultrasonic health monitoring of lithium-ion batteries. Electronics 8, 751 (2019). doi: 10.3390/electronics8070751

    CrossRef Google Scholar

    [26] Hsieh AG, Bhadra S, Hertzberg BJ et al. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health. Energy Environ Sci 8, 1569–1577 (2015). doi: 10.1039/C5EE00111K

    CrossRef Google Scholar

    [27] Deng Z, Huang ZY, Shen Y et al. Ultrasonic scanning to observe wetting and “unwetting” in li-ion pouch cells. Joule 4, 2017–2029 (2020). doi: 10.1016/j.joule.2020.07.014

    CrossRef Google Scholar

    [28] Yang LY, Li YP, Fang F et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

    CrossRef Google Scholar

    [29] Zhang L, Zhen YQ, Tong LM. Optical micro/nanofiber enabled tactile sensors and soft actuators: A review. Opto-Electron Sci 3, 240005 (2024). doi: 10.29026/oes.2024.240005

    CrossRef Google Scholar

    [30] Shum PP, Keiser G, Humbert G et al. Highly sensitive microfiber ultrasound sensor for photoacoustic imaging. Opto-Electron Adv 6, 230065 (2023). doi: 10.29026/oea.2023.230065

    CrossRef Google Scholar

    [31] Liu HH, Hu DJJ, Sun QZ et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci 2, 220025 (2023). doi: 10.29026/oes.2023.220025

    CrossRef Google Scholar

    [32] Chen G, Xia JJ. Non-contact shear wave generation and detection using high frequency air-coupled focused transducer and fiber optic based sagnac interferometer for mechanical characterization. Sensors 22, 5824 (2022).

    Google Scholar

    [33] Wang JY, Ai F, Sun QZ et al. Diaphragm-based optical fiber sensor array for multipoint acoustic detection. Opt Express 26, 25293–25304 (2018). doi: 10.1364/OE.26.025293

    CrossRef Google Scholar

    [34] Yang LY, Xu DC, Chen G et al. Miniaturized fiber optic ultrasound sensor with multiplexing for photoacoustic imaging. Photoacoustics 28, 100421 (2022). doi: 10.1016/j.pacs.2022.100421

    CrossRef Google Scholar

    [35] Duque WS, Rodríguez Díaz CA, Leal-Junior AG et al. Fiber-optic hydrophone based on Michelson’s interferometer with active stabilization for liquid volume measurement. Sensors 22, 4404 (2022). doi: 10.3390/s22124404

    CrossRef Google Scholar

    [36] Li C, Lu SS, Zhong C et al. High-sensitivity low-frequency Fabry-Perot ultrasonic hydrophone with Chitosan diaphragm. IEEE Sens J 22, 6669–6676 (2022). doi: 10.1109/JSEN.2022.3155273

    CrossRef Google Scholar

    [37] Chen HB, Chen QQ, Wang W et al. Fiber-optic, extrinsic Fabry–Perot interferometric dual-cavity sensor interrogated by a dual-segment, low-coherence Fizeau interferometer for simultaneous measurements of pressure and temperature. Opt Express 27, 38744–38758 (2019). doi: 10.1364/OE.382761

    CrossRef Google Scholar

    [38] Yang LY, Dai CH, Wang AQ et al. Multi-channel parallel ultrasound detection based on a photothermal tunable fiber optic sensor array. Opt Lett 47, 3700–3703 (2022). doi: 10.1364/OL.464148

    CrossRef Google Scholar

    [39] Jiang JF, Zhang TH, Wang S et al. Noncontact ultrasonic detection in low-pressure carbon dioxide medium using high sensitivity fiber-optic Fabry–Perot sensor system. J Lightwave Technol 35, 5079–5085 (2017). doi: 10.1109/JLT.2017.2765693

    CrossRef Google Scholar

    [40] Ma J, Xuan HF, Ho HL et al. Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technol Lett 25, 932–935 (2013). doi: 10.1109/LPT.2013.2256343

    CrossRef Google Scholar

    [41] Feng DY, Zheng HR, Sun H et al. SnO2/polyvinyl alcohol nanofibers wrapped tilted fiber grating for high-sensitive humidity sensing and fast human breath monitoring. Sens Actuators B: Chem 388, 133807 (2023). doi: 10.1016/j.snb.2023.133807

    CrossRef Google Scholar

    [42] Guo YS, Jiang BQ, Liu L et al. In situ monitoring of curing reaction in solid composite propellant with fiber-optic sensors. ACS Sens 8, 2664–2672 (2023). doi: 10.1021/acssensors.3c00521

    CrossRef Google Scholar

  • Supplementary information for Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint