Li JP, Liu XH, Xiao ZH et al. Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation. Opto-Electron Sci x, 240034 (2025). doi: 10.29026/oes.2025.240034
Citation: Li JP, Liu XH, Xiao ZH et al. Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation. Opto-Electron Sci x, 240034 (2025). doi: 10.29026/oes.2025.240034

Article Open Access

Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation

More Information
  • Ultrasonic neuromodulation has gained recognition as a promising therapeutic approach. A miniature transducer capable of generating suitable-strength and broadband ultrasound is of great significance for achieving high spatial precision ultrasonic neural stimulation. However, the ultrasound transducer with the above integrated is yet to be challenged. Here, we developed a fiber-optic photoacoustic emitter (FPE) with a diameter of 200 μm, featuring controllable sound intensity and a broadband response (−6 dB bandwidth: 162%). The device integrates MXene (Ti3C2Tx), known for its exceptional photothermal properties, and polydimethylsiloxane, which offers a high thermal expansion coefficient. This FPE, exhibiting high spatial precision (lateral: 163.3 μm, axial: 207 μm), is capable of selectively activating neurons in targeted regions. Using the TetTagging method to selectively express a cfos-promoter-inducible mCHERRY gene within the medial prefrontal cortex (mPFC), we found that photoacoustic stimulation significantly and temporarily activated the neurons. In vivo fiber photometry demonstrated that photoacoustic stimulation induced substantial calcium transients in mPFC neurons. Furthermore, we confirmed that photoacoustic stimulation of the mPFC using FPE markedly alleviates acute social defeat stress-induced emotional stress in mice. This work demonstrates the potential of FPEs for clinical applications, with a particular focus on modulating neural activity to regulate emotions.
  • 加载中
  • [1] Hou XD, Jing JN, Jiang YZ et al. Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice. Nat Commun 15, 2253 (2024). doi: 10.1038/s41467-024-46461-y

    CrossRef Google Scholar

    [2] Piech DK, Johnson BC, Shen K et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat Biomed Eng 4, 207–222 (2020). doi: 10.1038/s41551-020-0518-9

    CrossRef Google Scholar

    [3] Shi LL, Jiang Y, Fernandez FR et al. Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter. Light Sci Appl 10, 143 (2021). doi: 10.1038/s41377-021-00580-z

    CrossRef Google Scholar

    [4] Cotero V, Graf J, Miwa H et al. Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nat Biomed Eng 6, 683–705 (2022). doi: 10.1038/s41551-022-00870-w

    CrossRef Google Scholar

    [5] Leinenga G, Langton C, Nisbet R et al. Ultrasound treatment of neurological diseases-current and emerging applications. Nat Rev Neurol 12, 161–174 (2016). doi: 10.1038/nrneurol.2016.13

    CrossRef Google Scholar

    [6] Yoon CW, Lee NS, Koo KM et al. Investigation of ultrasound-mediated intracellular Ca2+ oscillations in HIT-T15 pancreatic β-cell Line. Cells 9, 1129 (2020). doi: 10.3390/cells9051129

    CrossRef Google Scholar

    [7] Hou JF, Nayeem MOG, Caplan KA et al. An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation. Nat Commun 15, 4601 (2024). doi: 10.1038/s41467-024-48748-6

    CrossRef Google Scholar

    [8] Sato T, Shapiro MG, Tsao DY. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98, 1031–1041.e5 (2018). doi: 10.1016/j.neuron.2018.05.009

    CrossRef Google Scholar

    [9] Guo HS, Hamilton M, Offutt SJ et al. Ultrasound produces extensive brain activation via a cochlear pathway. Neuron 98, 1020–1030.e4 (2018). doi: 10.1016/j.neuron.2018.04.036

    CrossRef Google Scholar

    [10] Krauss JK, Lipsman N, Aziz T et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 17, 75–87 (2021).

    Google Scholar

    [11] Chen G, Yu FY, Shi LL et al. High-precision photoacoustic neural modulation uses a non-thermal mechanism. Adv Sci 11, 2403205 (2024). doi: 10.1002/advs.202403205

    CrossRef Google Scholar

    [12] Du ZY, Chen G, Li YM et al. Photoacoustic: A versatile nongenetic method for high-precision neuromodulation. Acc Chem Res 57, 1595–1607 (2024). doi: 10.1021/acs.accounts.4c00119

    CrossRef Google Scholar

    [13] Seo D, Neely RM, Shen K et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016). doi: 10.1016/j.neuron.2016.06.034

    CrossRef Google Scholar

    [14] Lee T, Baac HW, Li QC et al. Efficient photoacoustic conversion in optical nanomaterials and composites. Adv Opt Mater 6, 1800491 (2018). doi: 10.1002/adom.201800491

    CrossRef Google Scholar

    [15] Li JP, Yang Y, Chen ZY et al. Self-healing: a new skill unlocked for ultrasound transducer. Nano Energy 68, 104348 (2020). doi: 10.1016/j.nanoen.2019.104348

    CrossRef Google Scholar

    [16] Ma TG, Wang HZ, Guo LJ. OptoGPT: A foundation model for inverse design in optical multilayer thin film structures. Opto-Electron Adv 7, 240062 (2024). doi: 10.1038/s41467-020-14706-1

    CrossRef Google Scholar

    [17] Liu HH, Hu DJJ, Sun QZ et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci 2, 220025 (2023). doi: 10.1038/nprot.2011.371

    CrossRef Google Scholar

    [18] Mu MD, Geng HY, Rong KL et al. A limbic circuitry involved in emotional stress-induced grooming. Nat Commun 11, 2261 (2020). doi: 10.1038/s41467-020-16203-x

    CrossRef Google Scholar

    [19] Karatsoreos IN, McEwen BS. Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn Sci 15, 576–584 (2011). doi: 10.1016/j.tics.2011.10.005

    CrossRef Google Scholar

    [20] Kotlęga D, Gołąb-Janowska M, Masztalewicz M et al. The emotional stress and risk of ischemic stroke. Neurol Neurochir Pol 50, 265–270 (2016). doi: 10.1016/j.pjnns.2016.03.006

    CrossRef Google Scholar

    [21] Gilboa T. Emotional stress-induced seizures: another reflex epilepsy. Epilepsia 53, e29–e32 (2012).

    Google Scholar

    [22] Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci 1251, E1–E24 (2012). doi: 10.1111/j.1749-6632.2011.06430.x

    CrossRef Google Scholar

    [23] Hermans EJ, Henckens MJAG, Joëls M et al. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci 37, 304–314 (2014). doi: 10.1016/j.tins.2014.03.006

    CrossRef Google Scholar

    [24] van Oort J, Tendolkar I, Hermans EJ et al. How the brain connects in response to acute stress: A review at the human brain systems level. Neurosci Biobehav Rev 83, 281–297 (2017). doi: 10.1016/j.neubiorev.2017.10.015

    CrossRef Google Scholar

    [25] Somerville LH, Wagner DD, Wig GS et al. Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cereb Cortex 23, 49–60 (2013). doi: 10.1093/cercor/bhr373

    CrossRef Google Scholar

    [26] Sinha R, Lacadie CM, Constable RT et al. Dynamic neural activity during stress signals resilient coping. Proc Natl Acad Sci USA 113, 8837–8842 (2016). doi: 10.1073/pnas.1600965113

    CrossRef Google Scholar

    [27] Kalinichenko LS, Kornhuber J, Müller CP. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front Neuroendocrin 55, 100783 (2019). doi: 10.1016/j.yfrne.2019.100783

    CrossRef Google Scholar

    [28] Gao JH, Zhang L, Zhu JF et al. Prefrontal cortex hemodynamics and functional connectivity changes during performance working memory tasks in older adults with sleep disorders. Brain Sci 13, 497 (2023). doi: 10.3390/brainsci13030497

    CrossRef Google Scholar

    [29] Liu TT, Qi CX, Bai WW et al. Behavioral state-dependent oscillatory activity in prefrontal cortex induced by chronic social defeat stress. Front Neurosci 16, 885432 (2022). doi: 10.3389/fnins.2022.885432

    CrossRef Google Scholar

    [30] Chen JJ, Jin QQ, Li YB et al. Molten salt‐shielded synthesis (MS3) of MXenes in sir. Energy Environ Mater 6, e12328 (2023). doi: 10.1002/eem2.12328

    CrossRef Google Scholar

    [31] Lu HZ, Wang JH, Li HM et al. Efficient photothermal conversion of MXenes and their application in biomedicine. Mater Chem Front 7, 4372–4399 (2023). doi: 10.1039/D3QM00220A

    CrossRef Google Scholar

    [32] Sayed M, Yu JG, Liu G et al. Non-noble plasmonic metal-based photocatalysts. Chem Rev 122, 10484–10537 (2022). doi: 10.1021/acs.chemrev.1c00473

    CrossRef Google Scholar

    [33] Cui XM, Ruan QF, Zhuo XL et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chem Rev 123, 6891–6952 (2023). doi: 10.1021/acs.chemrev.3c00159

    CrossRef Google Scholar

    [34] Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat Nanotechnol 10, 25–34 (2015). doi: 10.1038/nnano.2014.311

    CrossRef Google Scholar

    [35] Liu JG, Zhang H, Link S et al. Relaxation of Plasmon-induced hot carriers. ACS Photonics 5, 2584–2595 (2018). doi: 10.1021/acsphotonics.7b00881

    CrossRef Google Scholar

    [36] Bernardi M, Mustafa J, Neaton JB et al. Theory and computation of hot carriers generated by surface Plasmon polaritons in noble metals. Nat Commun 6, 7044 (2015). doi: 10.1038/ncomms8044

    CrossRef Google Scholar

    [37] Linic S, Aslam U, Boerigter C et al. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 14, 567–576 (2015). doi: 10.1038/nmat4281

    CrossRef Google Scholar

    [38] Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as Nano-sources of heat. Laser Photonics Rev 7, 171–187 (2013). doi: 10.1002/lpor.201200003

    CrossRef Google Scholar

    [39] Shahzad F, Alhabeb M, Hatter CB et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). doi: 10.1126/science.aag2421

    CrossRef Google Scholar

    [40] Xing WX, Wang LD, Maslov K et al. Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt Lett 38, 52–54 (2013). doi: 10.1364/OL.38.000052

    CrossRef Google Scholar

    [41] Ansari R, Zhang EZ, Desjardins AE et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light Sci Appl 7, 75 (2018). doi: 10.1038/s41377-018-0070-5

    CrossRef Google Scholar

    [42] Du XY, Li JP, Niu GD et al. Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat Commun 12, 3348 (2021). doi: 10.1038/s41467-021-23788-4

    CrossRef Google Scholar

    [43] Yu K, Niu XD, Krook-Magnuson EK et al. Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation. Nat Commun 12, 2519 (2021). doi: 10.1038/s41467-021-22743-7

    CrossRef Google Scholar

    [44] Murphy KR, Farrell JS, Bendig J et al. Optimized ultrasound neuromodulation for non-invasive control of behavior and physiology. Neuron 112, 3252–3266.e5 (2024). doi: 10.1016/j.neuron.2024.07.002

    CrossRef Google Scholar

    [45] Zhang Z, Ferretti V, Güntan İ et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci 18, 553–561 (2015). doi: 10.1038/nn.3957

    CrossRef Google Scholar

    [46] Kim J, Kang S, Choi TY et al. Metabotropic glutamate receptor 5 in amygdala target neurons regulates susceptibility to chronic social stress. Biol Psychiatry 92, 104–115 (2022). doi: 10.1016/j.biopsych.2022.01.006

    CrossRef Google Scholar

    [47] Cattane N, Vernon AC, Borsini A et al. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 58, 55–79 (2022). doi: 10.1016/j.euroneuro.2022.02.002

    CrossRef Google Scholar

  • Supplementary information for Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
    Supplementary Movie S1
    Supplementary Movie S2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint