Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326
Citation: Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326

The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-nano manufacturing

    Fund Project: National Natural Science Foundation of China (62175195, 61875158), National Key Research and Development Program of China ( 2017YFB1104700), and Fundamental Research Funds for the Central Universities
More Information
  • The slippery surface inspired by Nepenthes has received research and industry attentions due to its excellent liquid repellency, stability and self-repair property. The femtosecond laser is a powerful method to prepare the slippery surfaces due to its universality in processing materials with high precision, and high controllability. In this paper, taking the lyophobicity of slippery surfaces as a background, using femtosecond laser mico/nano-manufacturing technology as a method, the development of slippery surfaces by femtosecond laser was summarized from two perspectives, including the femtosecond laser mico/nano-manufacturing and applications of slippery surfaces. By controlling the processing parameters of femtosecond laser, the slippery surfaces could be fabricated on various materials, such as polymers, hard brittle transparent material, and metals. The prepared slippery surface can be applied in the fields of droplet and bubble manipulation, biological anticoagulation, antifouling, and anti-corrosion. Finally, the challenges of slippery surfaces were summarized.
  • 加载中
  • [1] Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443−447. doi: 10.1038/nature10447

    CrossRef Google Scholar

    [2] Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85−89. doi: 10.1038/nature17189

    CrossRef Google Scholar

    [3] Li J S, Ueda E, Paulssen D, et al. Slippery lubricant-infused surfaces: properties and emerging applications[J]. Adv Funct Mater, 2019, 29(4): 1802317. doi: 10.1002/adfm.201802317

    CrossRef Google Scholar

    [4] Zhao X, Wei J F, Li B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. J Colloid Interface Sci, 2020, 575: 140−149. doi: 10.1016/j.jcis.2020.04.097

    CrossRef Google Scholar

    [5] Zhao H X, Sun Q Q, Deng X, et al. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces[J]. Adv Mater, 2018, 30(29): 1802141. doi: 10.1002/adma.201802141

    CrossRef Google Scholar

    [6] Xiao X, Zhang C H, Ma H Y, et al. Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment[J]. ACS Nano, 2019, 13(4): 4083−4090. doi: 10.1021/acsnano.8b08480

    CrossRef Google Scholar

    [7] Wei D S, Wang J G, Li S Y, et al. Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy[J]. Chem Eng J, 2021, 425: 130450. doi: 10.1016/j.cej.2021.130450

    CrossRef Google Scholar

    [8] Wang H J, Zhang Z H, Wang Z K, et al. Improved dynamic stability of superomniphobic surfaces and droplet transport on slippery surfaces by dual-scale re-entrant structures[J]. Chem Eng J, 2020, 394: 124871. doi: 10.1016/j.cej.2020.124871

    CrossRef Google Scholar

    [9] Liu W J, Pan R, Cai M Y, et al. Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces[J]. J Mater Chem A, 2020, 8(14): 6647−6660. doi: 10.1039/C9TA14116B

    CrossRef Google Scholar

    [10] Leslie D C, Waterhouse A, Berthet J B, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling[J]. Nat Biotechnol, 2014, 32(11): 1134−1140. doi: 10.1038/nbt.3020

    CrossRef Google Scholar

    [11] Badv M, Imani S M, Weitz J I, et al. Lubricant-infused surfaces with built-in functional biomolecules exhibit simultaneous repellency and tunable cell adhesion[J]. ACS Nano, 2018, 12(11): 10890−10902. doi: 10.1021/acsnano.8b03938

    CrossRef Google Scholar

    [12] Fang Y, Liang J, Bai X, et al. Magnetically controllable isotropic/anisotropic slippery surface for flexible droplet manipulation[J]. Langmuir, 2020, 36(50): 15403−15409. doi: 10.1021/acs.langmuir.0c03008

    CrossRef Google Scholar

    [13] Yang J, Li J Y, Jia X H, et al. Fabrication of robust and transparent slippery coating with hot water repellency, antifouling property, and corrosion resistance[J]. ACS Appl Mater Interfaces, 2020, 12(25): 28645−28654. doi: 10.1021/acsami.0c06743

    CrossRef Google Scholar

    [14] Yang S K, Dai X M, Stogin B B, et al. Ultrasensitive surface-enhanced raman scattering detection in common fluids[J]. Proc Natl Acad Sci USA, 2016, 113(2): 268−273. doi: 10.1073/pnas.1518980113

    CrossRef Google Scholar

    [15] Deng R, Shen T, Chen H L, et al. Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?[J]. J Mater Chem A, 2020, 8(16): 7536−7547. doi: 10.1039/D0TA02000A

    CrossRef Google Scholar

    [16] Zeng X, Guo Z G, Liu W M. Recent advances in slippery liquid-infused surfaces with unique properties inspired by nature[J]. Bio-Des Manuf, 2021, 4(3): 506−525. doi: 10.1007/s42242-021-00133-8

    CrossRef Google Scholar

    [17] Zhang P F, Liu G, Zhang D Y, et al. Liquid-infused surfaces on electrosurgical instruments with exceptional antiadhesion and low-damage performances[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33713−33720. doi: 10.1021/acsami.8b13373

    CrossRef Google Scholar

    [18] Chen Y, Guo Z G. An ionic liquid-infused slippery surface for temperature stability, shear resistance and corrosion resistance[J]. J Mater Chem A, 2020, 8(45): 24075−24085. doi: 10.1039/D0TA08717C

    CrossRef Google Scholar

    [19] Liang Y Z, Wang P, Zhang D. Designing a highly stable slippery organogel on Q235 carbon steel for inhibiting microbiologically influenced corrosion[J]. ACS Appl Bio Mater, 2021, 4(8): 6056−6064. doi: 10.1021/acsabm.1c00357

    CrossRef Google Scholar

    [20] Anand S, Paxson A T, Dhiman R, et al. Enhanced condensation on lubricant-impregnated nanotextured surfaces[J]. ACS Nano, 2012, 6(11): 10122−10129. doi: 10.1021/nn303867y

    CrossRef Google Scholar

    [21] Jiang D, Xia X C, Hou J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy[J]. Chem Eng J, 2019, 373: 285−297. doi: 10.1016/j.cej.2019.05.046

    CrossRef Google Scholar

    [22] Li H, Feng X L, Peng Y J, et al. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability[J]. Nanoscale, 2020, 12(14): 7700−7711. doi: 10.1039/C9NR10699E

    CrossRef Google Scholar

    [23] Song F, Wu C Q, Chen H L, et al. Water-repellent and corrosion-resistance properties of superhydrophobic and lubricant-infused super slippery surfaces[J]. RSC Adv, 2017, 7(70): 44239−44246. doi: 10.1039/C7RA04816E

    CrossRef Google Scholar

    [24] Lee J, Jiang Y H, Hizal F, et al. Durable omniphobicity of oil-impregnated anodic aluminum oxide nanostructured surfaces[J]. J Colloid Interface Sci, 2019, 553: 734−745. doi: 10.1016/j.jcis.2019.06.068

    CrossRef Google Scholar

    [25] Sun J, Wang C, Song J L, et al. Multi-functional application of oil-infused slippery al surface: from anti-icing to corrosion resistance[J]. J Mater Sci, 2018, 53(23): 16099−16109. doi: 10.1007/s10853-018-2760-z

    CrossRef Google Scholar

    [26] Geraldi N R, Guan J H, Dodd L E, et al. Double-sided slippery liquid-infused porous materials using conformable mesh[J]. Sci Rep, 2019, 9(1): 13280. doi: 10.1038/s41598-019-49887-3

    CrossRef Google Scholar

    [27] Zhang M L, Chen R R, Liu Q, et al. Long-term stability of a liquid-infused coating with anti-corrosion and anti-icing potentials on al alloy[J]. ChemElectroChem, 2019, 6(15): 3911−3919. doi: 10.1002/celc.201900302

    CrossRef Google Scholar

    [28] Yong J L, Chen F, Yang Q, et al. Rapid fabrication of large-area concave microlens arrays on pdms by a femtosecond laser[J]. ACS Appl Mater Interfaces, 2013, 5(19): 9382−9385. doi: 10.1021/am402923t

    CrossRef Google Scholar

    [29] Cheng Y, Yang Q, Fang Y, et al. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Adv Mater Interfaces, 2019, 6(10): 1900067. doi: 10.1002/admi.201900067

    CrossRef Google Scholar

    [30] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Appl Phys Rev, 2014, 1(4): 041303. doi: 10.1063/1.4904320

    CrossRef Google Scholar

    [31] Kodama N, Takahashi T, Inoue T, et al. Morphological characteristics of nanoholes induced by single-shot femtosecond laser ablation of borates and aluminate silicates[J]. J Laser Appl, 2020, 32(1): 012015. doi: 10.2351/1.5130696

    CrossRef Google Scholar

    [32] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing[J]. Opto-Electron Adv, 2020, 3(5): 190035. doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [33] Zhou Y, Chen L W, Du Z R, et al. Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix[J]. Opt Mater Express, 2015, 5(7): 1606−1612. doi: 10.1364/OME.5.001606

    CrossRef Google Scholar

    [34] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nat Photonics, 2008, 2(4): 219−225. doi: 10.1038/nphoton.2008.47

    CrossRef Google Scholar

    [35] Chen L W, Yin Y M, Li Y, et al. Multifunctional inverse sensing by spatial distribution characterization of scattering photons[J]. Opto-Electron Adv, 2019, 2(9): 190019. doi: 10.29026/oea.2019.190019

    CrossRef Google Scholar

    [36] Yong J L, Zhan Z B, Singh S C, et al. Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing[J]. ACS Appl Polym Mater, 2019, 1(11): 2819−2825. doi: 10.1021/acsapm.9b00269

    CrossRef Google Scholar

    [37] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Appl Phys Lett, 2008, 92(4): 041914. doi: 10.1063/1.2834902

    CrossRef Google Scholar

    [38] Deng Z F, Chen F, Yang Q, et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging[J]. Adv Funct Mater, 2016, 26(12): 1995−2001. doi: 10.1002/adfm.201504941

    CrossRef Google Scholar

    [39] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nat Mater, 2002, 1(4): 217−224. doi: 10.1038/nmat767

    CrossRef Google Scholar

    [40] Momma C, Nolte S, Chichkov B N, et al. Precise laser ablation with ultrashort pulses[J]. Appl Surf Sci, 1997, 109–110: 15−19. doi: 10.1016/S0169-4332(96)00613-7

    CrossRef Google Scholar

    [41] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices - micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001, 412(6848): 697−698.

    Google Scholar

    [42] Lin Z Y, Liu H G, Ji L F, et al. Realization of ∼10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air[J]. Nano Lett, 2020, 20(7): 4947−4952. doi: 10.1021/acs.nanolett.0c01013

    CrossRef Google Scholar

    [43] Kontenis G, Gailevičius D, Jonušauskas L, et al. Dynamic aberration correction via spatial light modulator (SLM) for femtosecond direct laser writing: towards spherical voxels[J]. Opt Express, 2020, 28(19): 27850−27864. doi: 10.1364/OE.397006

    CrossRef Google Scholar

    [44] Pavlov D, Porfirev A, Khonina S, et al. Coaxial hole array fabricated by ultrafast femtosecond-laser processing with spatially multiplexed vortex beams for surface enhanced infrared absorption[J]. Appl Surf Sci, 2021, 541: 148602. doi: 10.1016/j.apsusc.2020.148602

    CrossRef Google Scholar

    [45] Yalizay B, Ersoy T, Soylu B, et al. Fabrication of nanometer-size structures in metal thin films using femtosecond laser bessel beams[J]. Appl Phys Lett, 2012, 100(3): 031104. doi: 10.1063/1.3678030

    CrossRef Google Scholar

    [46] Zhao Y Z, Su Y L, Hou X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electron Adv, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008

    CrossRef Google Scholar

    [47] Su Y L, Zhao Y Z, Jiang S Y, et al. Anisotropic superhydrophobic properties of bioinspired surfaces by laser ablation of metal substrate inside water[J]. Adv Mater Interfaces, 2021, 8(16): 2100555. doi: 10.1002/admi.202100555

    CrossRef Google Scholar

    [48] Bian H, Shan C, Liu K Y, et al. A miniaturized rogowski current transducer with wide bandwidth and fast response[J]. J Micromech Microeng, 2016, 26(11): 115015. doi: 10.1088/0960-1317/26/11/115015

    CrossRef Google Scholar

    [49] Zou T T, Zhao B, Xin W, et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light Sci Appl, 2020, 9: 69. doi: 10.1038/s41377-020-0311-2

    CrossRef Google Scholar

    [50] Yong J L, Chen F, Yang Q, et al. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Adv Mater Interfaces, 2017, 4(20): 1700552. doi: 10.1002/admi.201700552

    CrossRef Google Scholar

    [51] Yong J L, Huo J L, Yang Q, et al. Femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Adv Mater Interfaces, 2018, 5(7): 1701479. doi: 10.1002/admi.201701479

    CrossRef Google Scholar

    [52] Liang J, Bian H, Yang Q, et al. Femtosecond laser-patterned slippery surfaces on PET for liquid patterning and blood resistance[J]. Opt Laser Technol, 2020, 132: 106469. doi: 10.1016/j.optlastec.2020.106469

    CrossRef Google Scholar

    [53] Lv X D, Jiao Y L, Wu S Z, et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Appl Mater Interfaces, 2019, 11(22): 20574−20580. doi: 10.1021/acsami.9b06849

    CrossRef Google Scholar

    [54] Deng C, Ki H. Tunable wetting surfaces with interacting cavities via femtosecond laser patterning and wet etching[J]. J Appl Phys, 2020, 128(1): 015306. doi: 10.1063/5.0011885

    CrossRef Google Scholar

    [55] Gopal V, Manivasagam G. Wear - corrosion synergistic effect on Ti–6Al–4V alloy in H2O2 and albumin environment[J]. J Alloys Compd, 2020, 830: 154539. doi: 10.1016/j.jallcom.2020.154539

    CrossRef Google Scholar

    [56] Sharma A, Oh M C, Kim J T, et al. Investigation of electrochemical corrosion behavior of additive manufactured Ti–6Al–4V alloy for medical implants in different electrolytes[J]. J Alloys Compd, 2020, 830: 154620. doi: 10.1016/j.jallcom.2020.154620

    CrossRef Google Scholar

    [57] Zhang Z, Wu X Q, Tan J B. In-situ monitoring of stress corrosion cracking of 304 stainless steel in high-temperature water by analyzing acoustic emission waveform[J]. Corros Sci, 2019, 146: 90−98. doi: 10.1016/j.corsci.2018.10.022

    CrossRef Google Scholar

    [58] Cheng Y, Yang Q, Lu Y, et al. A femtosecond bessel laser for preparing a nontoxic slippery liquid-infused porous surface (slips) for improving the hemocompatibility of NiTi alloys[J]. Biomater Sci, 2020, 8(23): 6505−6514. doi: 10.1039/D0BM01369B

    CrossRef Google Scholar

    [59] Karkantonis T, Gaddam A, See T L, et al. Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications[J]. Surf Coat Technol, 2020, 399: 126166. doi: 10.1016/j.surfcoat.2020.126166

    CrossRef Google Scholar

    [60] Fang Y, Yong J L, Cheng Y, et al. Liquid-infused slippery stainless steel surface prepared by alcohol-assisted femtosecond laser ablation[J]. Adv Mater Interfaces, 2021, 8(5): 2001334. doi: 10.1002/admi.202001334

    CrossRef Google Scholar

    [61] Jiang J K, Gao J, Zhang H D, et al. Directional pumping of water and oil microdroplets on slippery surface[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2482−2487. doi: 10.1073/pnas.1817172116

    CrossRef Google Scholar

    [62] Tenjimbayashi M, Nishioka S, Kobayashi Y, et al. A lubricant-sandwiched coating with long-term stable anticorrosion performance[J]. Langmuir, 2018, 34(4): 1386−1393. doi: 10.1021/acs.langmuir.7b03913

    CrossRef Google Scholar

    [63] Urata C, Nagashima H, Hatton B D, et al. Transparent organogel films showing extremely efficient and durable anti-icing performance[J]. ACS Appl Mater Interfaces, 2021, 13(24): 28925−28937. doi: 10.1021/acsami.1c06815

    CrossRef Google Scholar

    [64] Ware C S, Smith-Palmer T, Peppou-Chapman S, et al. Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces[J]. ACS Appl Mater Interfaces, 2018, 10(4): 4173−4182. doi: 10.1021/acsami.7b14736

    CrossRef Google Scholar

    [65] Wu D Q, Ma L W, Zhang F, et al. Durable deicing lubricant-infused surface with photothermally switchable hydrophobic/slippery property[J]. Mater Des, 2020, 185: 108236. doi: 10.1016/j.matdes.2019.108236

    CrossRef Google Scholar

    [66] Yao X, Dunn S S, Kim P, et al. Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties[J]. Angew Chem Int Ed, 2014, 53(17): 4418−4422. doi: 10.1002/anie.201310385

    CrossRef Google Scholar

    [67] Movafaghi S, Wang W, Bark D L, et al. Hemocompatibility of super-repellent surfaces: current and future[J]. Mater Horiz, 2019, 6(8): 1596−1610. doi: 10.1039/C9MH00051H

    CrossRef Google Scholar

    [68] Sun L Y, Bian F K, Wang Y, et al. Bioinspired programmable wettability arrays for droplets manipulation[J]. Proc Natl Acad Sci USA, 2020, 117(9): 4527−4532. doi: 10.1073/pnas.1921281117

    CrossRef Google Scholar

    [69] Sun Q Q, Wang D H, Li Y N, et al. Surface charge printing for programmed droplet transport[J]. Nat Mater, 2019, 18(9): 936−941. doi: 10.1038/s41563-019-0440-2

    CrossRef Google Scholar

    [70] Huang S L, Li J, Liu L, et al. Lossless fast drop self-transport on anisotropic omniphobic surfaces: origin and elimination of microscopic liquid residue[J]. Adv Mater, 2019, 31(27): 1901417. doi: 10.1002/adma.201901417

    CrossRef Google Scholar

    [71] Fang J H, Zhang Y B, Xiao L, et al. Self-propelled and electrobraking synergetic liquid manipulator toward microsampling and bioanalysis[J]. ACS Appl Mater Interfaces, 2021, 13(12): 14741−14751. doi: 10.1021/acsami.1c01494

    CrossRef Google Scholar

    [72] Chen C, Huang Z C, Jiao Y L, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage[J]. ACS Nano, 2019, 13(5): 5742−5752. doi: 10.1021/acsnano.9b01180

    CrossRef Google Scholar

    [73] Chauhan A, Bernardin A, Mussard W, et al. Preventing biofilm formation and associated occlusion by biomimetic glycocalyxlike polymer in central venous catheters[J]. J Infect Dis, 2014, 210(9): 1347−1356. doi: 10.1093/infdis/jiu249

    CrossRef Google Scholar

    [74] Chen G Q, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials[J]. Biomaterials, 2005, 26(33): 6565−6578. doi: 10.1016/j.biomaterials.2005.04.036

    CrossRef Google Scholar

    [75] Huang N, Yang P, Leng Y X, et al. Hemocompatibility of titanium oxide films[J]. Biomaterials, 2003, 24(13): 2177−2187. doi: 10.1016/S0142-9612(03)00046-2

    CrossRef Google Scholar

    [76] Sun T L, Tan H, Han D, et al. No platelet can adhere-largely improved blood compatibility on nanostructured superhydrophobic surfaces[J]. Small, 2005, 1(10): 959−963. doi: 10.1002/smll.200500095

    CrossRef Google Scholar

    [77] Fan H L, Chen P P, Qi R M, et al. Greatly improved blood compatibility by microscopic multiscale design of surface architectures[J]. Small, 2009, 5(19): 2144−2148. doi: 10.1002/smll.200900345

    CrossRef Google Scholar

    [78] Daniello R J, Waterhouse N E, Rothstein J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Phys Fluids, 2009, 21(8): 085103. doi: 10.1063/1.3207885

    CrossRef Google Scholar

    [79] He W Q, Liu P, Zhang J Q, et al. Emerging applications of bioinspired slippery surfaces in biomedical fields[J]. Chem Eur J, 2018, 24(56): 14864−14877. doi: 10.1002/chem.201801368

    CrossRef Google Scholar

    [80] Li X Y, Gao P, Tan J Y, et al. Assembly of metal–phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings[J]. ACS Appl Mater Interfaces, 2018, 10(47): 40844−40853. doi: 10.1021/acsami.8b14409

    CrossRef Google Scholar

    [81] Manabe K, Kyung K H, Shiratori S. Biocompatible slippery fluid-infused films composed of chitosan and alginate via layer-by-layer self-assembly and their antithrombogenicity[J]. ACS Appl Mater Interfaces, 2015, 7(8): 4763−4771. doi: 10.1021/am508393n

    CrossRef Google Scholar

    [82] Moradi S, Hadjesfandiari N, Toosi S F, et al. Effect of extreme wettability on platelet adhesion on metallic implants: from superhydrophilicity to superhydrophobicity[J]. ACS Appl Mater Interfaces, 2016, 8(27): 17631−17641. doi: 10.1021/acsami.6b03644

    CrossRef Google Scholar

    [83] Villegas M, Zhang Y X, Abu Jarad N, et al. Liquid-infused surfaces: a review of theory, design, and applications[J]. ACS Nano, 2019, 13(8): 8517−8536. doi: 10.1021/acsnano.9b04129

    CrossRef Google Scholar

    [84] Yuan S S, Luan S F, Yan S J, et al. Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection[J]. ACS Appl Mater Interfaces, 2015, 7(34): 19466−19473. doi: 10.1021/acsami.5b05865

    CrossRef Google Scholar

    [85] Doll K, Fadeeva E, Schaeske J, et al. Development of laser-structured liquid-infused titanium with strong biofilm-repellent properties[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9359−9368. doi: 10.1021/acsami.6b16159

    CrossRef Google Scholar

    [86] Lee Y, Chung Y W, Park J, et al. Lubricant-infused directly engraved nano-microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties[J]. Sci Rep, 2020, 10(1): 17454. doi: 10.1038/s41598-020-74517-8

    CrossRef Google Scholar

    [87] Liu X W, Wang L Q, Qiao Y F, et al. Adhesion of liquid food to packaging surfaces: mechanisms, test methods, influencing factors and anti-adhesion methods[J]. J Food Eng, 2018, 228: 102−117. doi: 10.1016/j.jfoodeng.2018.02.002

    CrossRef Google Scholar

    [88] Schaider L A, Balan S A, Blum A, et al. Fluorinated compounds in U. S. fast food packaging[J]. Environ Sci Technol Lett, 2017, 4(3): 105−111. doi: 10.1021/acs.estlett.6b00435

    CrossRef Google Scholar

    [89] Williams H, Lindström A, Trischler J, et al. Avoiding food becoming waste in households – the role of packaging in consumers' practices across different food categories[J]. J. Clean Prod, 2020, 265: 121775. doi: 10.1016/j.jclepro.2020.121775

    CrossRef Google Scholar

    [90] Williams H, Wikström F, Otterbring T, et al. Reasons for household food waste with special attention to packaging[J]. J Clean Prod, 2012, 24: 141−148. doi: 10.1016/j.jclepro.2011.11.044

    CrossRef Google Scholar

    [91] Wohner B, Pauer E, Heinrich V, et al. Packaging-related food losses and waste: an overview of drivers and issues[J]. Sustainability, 2019, 11(1): 264. doi: 10.3390/su11010264

    CrossRef Google Scholar

    [92] Zouaghi S, Six T, Bellayer S, et al. Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing[J]. ACS Appl Mater Interfaces, 2017, 9(31): 26565−26573. doi: 10.1021/acsami.7b06709

    CrossRef Google Scholar

    [93] Qin Y K, Li Y, Zhang D, et al. Wettability, durability and corrosion properties of slippery laser-textured aluminum alloy surface under water impact[J]. Surf Coat Technol, 2020, 394: 125856. doi: 10.1016/j.surfcoat.2020.125856

    CrossRef Google Scholar

    [94] Zhang G Y, Liang B, Zhong Z X, et al. One-step solvent-free strategy for covalently attached, substrate-independent transparent slippery coating[J]. Adv Mater Interfaces, 2018, 5(20): 1800646. doi: 10.1002/admi.201800646

    CrossRef Google Scholar

    [95] Zhong X M, Hu H F, Yang L, et al. Robust hyperbranched polyester-based anti-smudge coatings for self-cleaning, anti-graffiti, and chemical shielding[J]. ACS Appl Mater Interfaces, 2019, 11(15): 14305−14312. doi: 10.1021/acsami.8b22447

    CrossRef Google Scholar

    [96] Lei L, Buddingh J, Wang J D, et al. Transparent omniphobic polyurethane coatings containing partially acetylated β–cyclodextrin as the polyol[J]. Chem Eng J, 2020, 380: 122554. doi: 10.1016/j.cej.2019.122554

    CrossRef Google Scholar

  • Nepenthes pitcher plant is a tropical insectivorous plant which is able to trap and digest insects. This unique property is mainly due to the rich micro/nano porous structures on the surfaces filled with a layer of lubricating, thus forming a slippery liquid-infused porous surface (SLIPS). When the insects stand on the mouth of pitch plant, they can easily fall into the pitcher because its inner surface is too smooth and thus digested by the digestive juices. Due to the mechanism of liquid-liquid contact between the lubricant and repelled object, SLIPS shows high stability and versatile liquid-repellency compared with superhydrophobic surfaces inspired by lotus leaves. Due to the fluidity of the lubricant, it can timely flow to the surface defects caused by external force and help recover the favorable slippery property. These excellent liquid repellency, stability and self-healing properties of SLIPS have attracted wide attentions from researchers, who carried out a large number of related studies. Methods to prepare SLIPS are mostly based on the three parts: fabrication of micro/nano-structures, low surface energy treatment and lubricant infusion. The fabrication of rough structure is the essential part during the process. Femtosecond laser has the ultra-short pulse width and ultra-high peak power, so it can process the majority of materials with high processing accuracy and strong controllability. Therefore, femtosecond laser has become a powerful tool for preparing the micro/nano-structure on the SLIPS. In addition, the femtosecond laser processing is directly performed on the material for subtractive manufacturing. It shows more stability compared with chemical treatment. In this paper, we focus on the preparation of SLIPS on different materials by femtosecond laser, including polymers, hard and brittle transparent materials, and metals. Then, the application of SLIPS is summarized in the fields of droplet bubble manipulation, biological anticoagulation, anti-fouling, and corrosion prevention. Finally, challenges of slippery surfaces were summarized.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint