2018 Vol. 1, No. 3
Cover Story: Cheng C H, Shen C C, Kao H Y, Hsieh D H, Wang H Y et al. 850/940-nm VCSEL for optical communication and 3D sensing. Opto-Electron Adv 1, 180005 (2018).
As the main transmitter for the intra-data-center link, the 850-nm vertical cavity surface emitting laser (VCSEL) array module is standardized toward 100/200/400 Gbps or beyond, which effectively increases the cloud transmission rate in data centers to meet the urgent demands on huge amount of audio/video/data exchange and streaming nowadays. Three teams from Taiwan University and Chiao Tung University review the state-of-the-art of the high-speed 850/940-nm VCSEL, discussing the structural design, mode control and the related data transmission performance. InGaAs/AlGaAs MQW was used to increase the differential gain and photon density in VCSEL. The multiple oxide layers and oxide-confined aperture were well designed in VCSEL to decrease the parasitic capacitance and generate single mode (SM) VCSEL. The maximal modulation bandwidth of 30 GHz was achieved with well-designed VCSEL structure. Other applications of the near-infrared VCSELs are discussed at the end of the paper.
-
{{article.year}}, {{article.volume}}({{article.issue}}): {{article.fpage | processPage:article.lpage:6}}. doi: {{article.doi}}{{article.articleStateNameEn}}, Published online {{article.preferredDate | date:'dd MMMM yyyy'}}, doi: {{article.doi}}{{article.articleStateNameEn}}, Accepted Date {{article.acceptedDate | date:'dd MMMM yyyy'}}CSTR: {{article.cstr}}
-
{{article.year}}, {{article.volume}}({{article.issue}}): {{article.fpage | processPage:article.lpage:6}}. doi: {{article.doi}}{{article.articleStateNameEn}}, Published online {{article.preferredDate | date:'dd MMMM yyyy'}}, doi: {{article.doi}}{{article.articleStateNameEn}}, Accepted Date {{article.acceptedDate | date:'dd MMMM yyyy'}}CSTR: {{article.cstr}}