Citation: |
|
[1] | 姚建铨.太赫兹技术及其应用[J].重庆邮电大学学报(自然科学版), 2010, 22(6): 703-707. Yao J Q. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(6): 703-707. |
[2] | 卜凡亮, 行鸿彦.太赫兹光谱技术的应用进展[J].电子测量与仪器学报, 2009, 23(4): 1-6. Bu F L, Xing H Y. Progress of Terahertz spectroscopy[J]. Journal of Electronic Measurement and Instrument, 2009, 23(4): 1-6. |
[3] | 常胜利, 王晓峰, 邵铮铮.太赫兹光谱技术原理及其应用[J].国防科技, 2015, 36(2): 17-22. Chang S L, Wang X F, Shao Z Z. Terahertz spectrum and its application[J]. National Defense Science & Technology, 2015, 36(2): 17-22. |
[4] | 张栋文, 袁建民.太赫兹技术概述[J].国防科技, 2015, 36(2): 12-16. Zhang D W, Yuan J M. Introduction to Terahertz technology[J]. National Defense Science & Technology, 2015, 36(2): 12-16. |
[5] | 姚建铨, 钟凯, 徐德刚.太赫兹空间应用研究与展望[J].空间电子技术, 2013, 10(2): 1-16. doi: 10.3969/j.issn.1674-7135.2013.02.001 Yao J Q, Zhong K, Xu D G. Study and outlook of Terahertz space applications[J]. Space Electronic Technology, 2013, 10(2): 1-16. doi: 10.3969/j.issn.1674-7135.2013.02.001 |
[6] | 刘丰, 朱忠博, 崔万照, 等.太赫兹技术在空间领域应用的探讨[J].太赫兹科学与电子信息学报, 2013, 11(6): 857-866. Liu F, Zhu Z B, Cui W Z, et al. Application of Terahertz techniques in space science[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(6): 857-866. |
[7] |
Garg P, Dodiyal A K. Reducing RF blackout during re-entry of the reusable launch vehicle[C]//Proceedings of 2009 IEEE Aerospace Conference, 2009: 918-932. |
[8] | Gillman E D, Foster J E, Blankson I M. Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation[R]. NASA/TM-2010-216220, E-17194, NASA Glenn Research Center, Cleveland, OH, United States, 2010. |
[9] | Huber P W, Evans J S, Schexnayder Jr C J. Comparison of theoretical and flight-measured ionization in a blunt body re-entry flowfield[J]. AIAA Journal, 1971, 9(6): 1154-1162. doi: 10.2514/3.49926 |
[10] | Vidmar R J. Generation of tenuous plasma clouds in the Earth's atmosphere[R]. Annual Report, SRI International Corp., Menlo Park, CA, United States, 1987. |
[11] | Gregoire D J, Santoru J, Schurnacher R W. Electromagnetic-wave propagation in unmagnetized plasmas[R]. Final Report, Hughes Research Labs., Malibu, CA, United States, 1992. |
[12] | Jamison S P, Shen J L, Jones D R, et al. Plasma characterization with terahertz time-domain measurements[J]. Journal of Applied Physics, 2003, 93(7): 4334-4336. doi: 10.1063/1.1560564 |
[13] | Liu J L, Zhang X C. Plasma characterization using terahertz-wave-enhanced fluorescence[J]. Applied Physics Letters, 2010, 96(4): 041505. doi: 10.1063/1.3291676 |
[14] | Liu J F, Xi X L, Wan G B, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method[J]. IEEE Transactions on Plasma Science, 2011, 39(3): 852-855. doi: 10.1109/TPS.2010.2098890 |
[15] | 蒋金, 陈长兴, 汪成, 等.太赫兹波在非均匀等离子体鞘套中的传播特性[J].系统仿真学报, 2015, 27(12): 3109-3115. Jiang J, Chen C X, Wang C, et al. Properties of Terahertz wave propagation in inhomogeneous plasma sheath[J]. Journal of System Simulation, 2015, 27(12): 3109-3115. |
[16] | 周天翔, 陈长兴, 蒋金, 等.太赫兹波在磁化等离子体中传输特性[J].强激光与粒子束, 2016, 28(7): 073101. doi: 10.11884/HPLPB201628.073101 Zhou T X, Chen C X, Jiang J, et al. Terahertz wave propagation in magnetized plasma sheath[J]. High Power Laser and Particle Beams, 2016, 28(7): 073101. doi: 10.11884/HPLPB201628.073101 |
[17] | 夏新仁, 尹成友, 王光明.非均匀磁化等离子体层的电磁特性分析[J].上海航天, 2008, 25(6): 8-11, 19. doi: 10.3969/j.issn.1006-1630.2008.06.002 Xia X R, Yin C Y, Wang G M. Electromagnetic characteristic analysis of non-uniform magnetized plasma slab[J]. Aerospace Shanghai, 2008, 25(6): 8-11, 19. doi: 10.3969/j.issn.1006-1630.2008.06.002 |
[18] | 马平, 秦龙, 石安华, 等.毫米波与太赫兹波在等离子体中传输特性[J].强激光与粒子束, 2013, 25(11): 2965-2970. Ma P, Qin L, Shi A H, et al. Millimeter wave and terahertz wave transmission characteristics in plasma[J]. High Power Laser and Particle Beams, 2013, 25(11): 2965-2970. |
[19] | Gürel C S, Öncü E. Frequency selective characteristics of a plasma layer with sinusoidally varying electron density profile[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(6): 589-597. doi: 10.1007/s10762-009-9483-9 |
[20] | Soltanmoradi E, Shokri B, Siahpoush V. Study of electromagnetic wave scattering from an inhomogeneous plasma layer using Green's function volume integral equation method[J]. Physics of Plasmas, 2016, 23(3): 033304. doi: 10.1063/1.4944907 |
[21] | Zhao L, Bao W M, Gong C Y. An overview of the research of plasma sheath[J]. Advanced Materials Research, 2014, 1049-1050: 1518-1521. doi: 10.4028/www.scientific.net/AMR.1049-1050.1518 |
[22] | Gal G, Gibson W. Interaction of electromagnetic waves with cylindrical plasma[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(4): 468-475. doi: 10.1109/TAP.1968.1139221 |
[23] | 郑灵, 赵青, 刘述章, 等.太赫兹波在非磁化等离子体中的传输特性研究[J].物理学报, 2012, 61(24): 373-379. Zheng L, Zhao Q, Liu S Z, et al. Studies of terahertz wave propagation in non-magnetized plasma[J]. Acta Physica Sinica, 2012, 61(24): 373-379. |
[24] | 袁忠才, 时家明, 汪家春.大气中固体燃烧等离子体与微波相互作用的实验研究[J].强激光与粒子束, 2005, 17(5): 707-710. Yuan Z C, Shi J M, Wang J C. Experimental studies of the interaction of microwaves with mixture burning plasmas in the atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(5): 707-710. |
[25] | 何湘, 陈建平, 倪晓武, 等.非均匀等离子体对平面电磁波的衰减[J].强激光与粒子束, 2010, 22(9): 2115-2118. He X, Chen J P, Ni X W, et al. Attenuation of planar electromagnetic waves by inhomogeneous plasma[J]. High Power Laser and Particle Beams, 2010, 22(9): 2115-2118. |
[26] | 马昊军, 王国林, 罗杰, 等. S—Ka频段电磁波在等离子体中传输特性的实验研究[J].物理学报, 2018, 67(2): 164-171. Ma H J, Wang G L, Luo J, et al. Experimental study of electromagnetic wave transmission characteristics in S-Ka band in plasma[J]. Acta Physica Sinica, 2018, 67(2): 164-171. |
[27] | 邬润辉, 刘洪艳, 刘佳琪, 等.等离子体鞘套对C波段通信信号传输影响的试验[J].北京航空航天大学学报, 2013, 39(11): 1437-1442. Wu R H, Liu H Y, Liu J Q, et al. Experiment on influence of the communication signals transmission in plasma sheath[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1437-1442. |
[28] | 刘丰, 刘江凡, 宫晨蓉, 等.太赫兹波在等离子鞘套中的传播[J].空间电子技术, 2013(4): 10-12. Liu F, Liu J F, Gong C R, et al. Transmission of Terahertz waves in plasma sheath[J]. Space Electronic Technology, 2013(4): 10-12. |
[29] | Chen X Y, Shen F F, Liu Y M, et al. Improved scattering-matrix method and its application to analysis of electromagnetic wave reflected by reentry plasma sheath[J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1755-1767. doi: 10.1109/TPS.2018.2823539 |
[30] | 李文浩, 田朝, 冯绅绅, 等.大气压等离子体射流装置及应用研究进展[J].真空科学与技术学报, 2018, 38(8): 695-707. Li W H, Tian C, Feng S S, et al. Advance in atmospheric pressure plasma jet and its applications[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 695-707. |
[31] | van Gessel A F H, Carbone E A D, Bruggeman P J, et al. Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering[J]. Plasma Sources Science and Technology, 2012, 21(1): 015003. doi: 10.1088/0963-0252/21/1/015003 |
[32] | Hübner S, Sousa J S, Puech V, et al. Electron properties in an atmospheric helium plasma jet determined by Thomson scattering[J]. Journal of Physics D: Applied Physics, 2014, 47(43): 432001. doi: 10.1088/0022-3727/47/43/432001 |
[33] | He Y X, Wang Y Y, Xu D G, et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation[J]. Applied Physics B, 2018, 124(1): 16. doi: 10.1007/s00340-017-6887-4 |
[34] | Ando A, Kurose T, Reymond V, et al. Electron density measurement of inductively coupled plasmas by terahertz time-domain spectroscopy (THz-TDS)[J]. Journal of Applied Physics, 2011, 110(7): 073303. doi: 10.1063/1.3633488 |
Overview: Terahertz radiation is generally referred to the electromagnetic wave in the frequency range of 0.1 THz~10 THz, which is between millimeter wave and infrared wave in the electromagnetic spectrum, and it has the characteristics of coherence, instantaneity, low electron energy, and good penetrability. For a long time, terahertz wave has not been fully exploited and utilized compared with other bands of electromagnetic wave due to the lack of efficient terahertz radiation sources and high sensitivity terahertz detectors. In recent years, with the development of terahertz generation and detection technology, scientists have a deeper understanding of terahertz wave. Terahertz technology has also been widely used in more and more fields, such as terahertz security inspection, terahertz imaging, and terahertz communication. After entering the near space, a high-temperature and high-pressure environment is produced surrounding the hypersonic vehicle under the fierce interaction of the vehicle and atmosphere, which can ionize the gas around the vehicle, and thus produce a layer of plasma sheath covering the vehicle. The existence of plasma sheath will cause the distortion of communication signal and even interrupt it, here comes the well-known "blackout" problem. With the rapid development of aerospace industry, especially the utilization and development of near space, plasma sheath has become an urgent problem to be solved. Current research shows that increasing the frequency of electromagnetic wave higher than the plasma oscillation frequency can effectively reduce the shielding effect of plasma on electromagnetic wave, and the frequency of terahertz wave is much higher than that of microwave, so it can propagate better in plasma than microwave, which provides an effective method to solve the problem of plasma sheath. The NASA's RAM project in 1970s explored the attenuation effect of plasma medium on microwaves, and put forward various theories and methods for reducing the blackout issue. Since then, many attempts have been made to reduce the impact of plasma sheath on communication signal. However, many of the studies focus on microwave band. Terahertz wave has a desirable prospect in solving the blackout problem, so it is of great practical significance to study the propagation of terahertz wave in plasma. In this paper, the theoretical model of plasma is established, and the propagation of 0.1 THz~10 THz terahertz wave in plasma is simulated. Then the experiment of terahertz wave reflection imaging of target under plasma shelter are carried out. Both theory and experiment results show that terahertz wave has good penetration in plasma. This study will lay a theoretical foundation for solving the plasma blackout problem of hypersonic vehicle in near space.
Plasma density distribution around vehicle surface
Terahertz wave propagation model in plasma
Propagation characteristics of terahertz wave in plasma. (a) Transmittance; (b) Reflectance; (c) Absorbance
Dielectric barrier discharge. (a) Device structure; (b) Plasma jet
Terahertz time-domain spectroscopy transmittance measurement system
Broadband terahertz source transmittance measurement system
Transmittance of terahertz wave in plasma. (a) Measurement result with THz-TDS; (b) Measurement result with broadband source
Terahertz wave plasma imaging system
Target and terahertz wave reflection imaging. Optical image of (a) a shim and (b) a nut; (c) Reflection image of the shim and (d) reflection image of the nut
Simulation structure under plasma shelter
Simulation result of reflection imaging. (a) A shim and (b) a nut