Geng X N, Li J N, Xu D G, et al. Terahertz wave propagation and imaging detection characteristics in plasma[J]. Opto-Electron Eng, 2020, 47(5): 190075. doi: 10.12086/oee.2020.190075
Citation: Geng X N, Li J N, Xu D G, et al. Terahertz wave propagation and imaging detection characteristics in plasma[J]. Opto-Electron Eng, 2020, 47(5): 190075. doi: 10.12086/oee.2020.190075

Terahertz wave propagation and imaging detection characteristics in plasma

    Fund Project: Supported by National Natural Science Foundation of China (61705162) and Equipment Pre-Research Fund (6140415010202)
More Information
  • In this paper, the theoretical model of ununiform plasma sheath is established based on scattering matrix method and the transmission characteristics of 0.1 THz~10 THz wave are simulated. A kind of plasma jet is produced in laboratory environment according to the principle of dielectric barrier discharge. Then the measurement of transmission spectrum of terahertz time-domain spectroscopy (THz-TDS), broadband terahertz source, and the terahertz wave reflective imaging of target under plasma shelter are carried out, respectively. Both theory and experiment results show that terahertz wave has good penetration in plasma, which provides a new way for communication and radar detection in blackout area.
  • 加载中
  • [1] 姚建铨.太赫兹技术及其应用[J].重庆邮电大学学报(自然科学版), 2010, 22(6): 703-707.

    Google Scholar

    Yao J Q. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(6): 703-707.

    Google Scholar

    [2] 卜凡亮, 行鸿彦.太赫兹光谱技术的应用进展[J].电子测量与仪器学报, 2009, 23(4): 1-6.

    Google Scholar

    Bu F L, Xing H Y. Progress of Terahertz spectroscopy[J]. Journal of Electronic Measurement and Instrument, 2009, 23(4): 1-6.

    Google Scholar

    [3] 常胜利, 王晓峰, 邵铮铮.太赫兹光谱技术原理及其应用[J].国防科技, 2015, 36(2): 17-22.

    Google Scholar

    Chang S L, Wang X F, Shao Z Z. Terahertz spectrum and its application[J]. National Defense Science & Technology, 2015, 36(2): 17-22.

    Google Scholar

    [4] 张栋文, 袁建民.太赫兹技术概述[J].国防科技, 2015, 36(2): 12-16.

    Google Scholar

    Zhang D W, Yuan J M. Introduction to Terahertz technology[J]. National Defense Science & Technology, 2015, 36(2): 12-16.

    Google Scholar

    [5] 姚建铨, 钟凯, 徐德刚.太赫兹空间应用研究与展望[J].空间电子技术, 2013, 10(2): 1-16. doi: 10.3969/j.issn.1674-7135.2013.02.001

    CrossRef Google Scholar

    Yao J Q, Zhong K, Xu D G. Study and outlook of Terahertz space applications[J]. Space Electronic Technology, 2013, 10(2): 1-16. doi: 10.3969/j.issn.1674-7135.2013.02.001

    CrossRef Google Scholar

    [6] 刘丰, 朱忠博, 崔万照, 等.太赫兹技术在空间领域应用的探讨[J].太赫兹科学与电子信息学报, 2013, 11(6): 857-866.

    Google Scholar

    Liu F, Zhu Z B, Cui W Z, et al. Application of Terahertz techniques in space science[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(6): 857-866.

    Google Scholar

    [7] Garg P, Dodiyal A K. Reducing RF blackout during re-entry of the reusable launch vehicle[C]//Proceedings of 2009 IEEE Aerospace Conference, 2009: 918-932.https://ieeexplore.ieee.org/document/4839389

    Google Scholar

    [8] Gillman E D, Foster J E, Blankson I M. Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation[R]. NASA/TM-2010-216220, E-17194, NASA Glenn Research Center, Cleveland, OH, United States, 2010.

    Google Scholar

    [9] Huber P W, Evans J S, Schexnayder Jr C J. Comparison of theoretical and flight-measured ionization in a blunt body re-entry flowfield[J]. AIAA Journal, 1971, 9(6): 1154-1162. doi: 10.2514/3.49926

    CrossRef Google Scholar

    [10] Vidmar R J. Generation of tenuous plasma clouds in the Earth's atmosphere[R]. Annual Report, SRI International Corp., Menlo Park, CA, United States, 1987.

    Google Scholar

    [11] Gregoire D J, Santoru J, Schurnacher R W. Electromagnetic-wave propagation in unmagnetized plasmas[R]. Final Report, Hughes Research Labs., Malibu, CA, United States, 1992.

    Google Scholar

    [12] Jamison S P, Shen J L, Jones D R, et al. Plasma characterization with terahertz time-domain measurements[J]. Journal of Applied Physics, 2003, 93(7): 4334-4336. doi: 10.1063/1.1560564

    CrossRef Google Scholar

    [13] Liu J L, Zhang X C. Plasma characterization using terahertz-wave-enhanced fluorescence[J]. Applied Physics Letters, 2010, 96(4): 041505. doi: 10.1063/1.3291676

    CrossRef Google Scholar

    [14] Liu J F, Xi X L, Wan G B, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method[J]. IEEE Transactions on Plasma Science, 2011, 39(3): 852-855. doi: 10.1109/TPS.2010.2098890

    CrossRef Google Scholar

    [15] 蒋金, 陈长兴, 汪成, 等.太赫兹波在非均匀等离子体鞘套中的传播特性[J].系统仿真学报, 2015, 27(12): 3109-3115.

    Google Scholar

    Jiang J, Chen C X, Wang C, et al. Properties of Terahertz wave propagation in inhomogeneous plasma sheath[J]. Journal of System Simulation, 2015, 27(12): 3109-3115.

    Google Scholar

    [16] 周天翔, 陈长兴, 蒋金, 等.太赫兹波在磁化等离子体中传输特性[J].强激光与粒子束, 2016, 28(7): 073101. doi: 10.11884/HPLPB201628.073101

    CrossRef Google Scholar

    Zhou T X, Chen C X, Jiang J, et al. Terahertz wave propagation in magnetized plasma sheath[J]. High Power Laser and Particle Beams, 2016, 28(7): 073101. doi: 10.11884/HPLPB201628.073101

    CrossRef Google Scholar

    [17] 夏新仁, 尹成友, 王光明.非均匀磁化等离子体层的电磁特性分析[J].上海航天, 2008, 25(6): 8-11, 19. doi: 10.3969/j.issn.1006-1630.2008.06.002

    CrossRef Google Scholar

    Xia X R, Yin C Y, Wang G M. Electromagnetic characteristic analysis of non-uniform magnetized plasma slab[J]. Aerospace Shanghai, 2008, 25(6): 8-11, 19. doi: 10.3969/j.issn.1006-1630.2008.06.002

    CrossRef Google Scholar

    [18] 马平, 秦龙, 石安华, 等.毫米波与太赫兹波在等离子体中传输特性[J].强激光与粒子束, 2013, 25(11): 2965-2970.

    Google Scholar

    Ma P, Qin L, Shi A H, et al. Millimeter wave and terahertz wave transmission characteristics in plasma[J]. High Power Laser and Particle Beams, 2013, 25(11): 2965-2970.

    Google Scholar

    [19] Gürel C S, Öncü E. Frequency selective characteristics of a plasma layer with sinusoidally varying electron density profile[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(6): 589-597. doi: 10.1007/s10762-009-9483-9

    CrossRef Google Scholar

    [20] Soltanmoradi E, Shokri B, Siahpoush V. Study of electromagnetic wave scattering from an inhomogeneous plasma layer using Green's function volume integral equation method[J]. Physics of Plasmas, 2016, 23(3): 033304. doi: 10.1063/1.4944907

    CrossRef Google Scholar

    [21] Zhao L, Bao W M, Gong C Y. An overview of the research of plasma sheath[J]. Advanced Materials Research, 2014, 1049-1050: 1518-1521. doi: 10.4028/www.scientific.net/AMR.1049-1050.1518

    CrossRef Google Scholar

    [22] Gal G, Gibson W. Interaction of electromagnetic waves with cylindrical plasma[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(4): 468-475. doi: 10.1109/TAP.1968.1139221

    CrossRef Google Scholar

    [23] 郑灵, 赵青, 刘述章, 等.太赫兹波在非磁化等离子体中的传输特性研究[J].物理学报, 2012, 61(24): 373-379.

    Google Scholar

    Zheng L, Zhao Q, Liu S Z, et al. Studies of terahertz wave propagation in non-magnetized plasma[J]. Acta Physica Sinica, 2012, 61(24): 373-379.

    Google Scholar

    [24] 袁忠才, 时家明, 汪家春.大气中固体燃烧等离子体与微波相互作用的实验研究[J].强激光与粒子束, 2005, 17(5): 707-710.

    Google Scholar

    Yuan Z C, Shi J M, Wang J C. Experimental studies of the interaction of microwaves with mixture burning plasmas in the atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(5): 707-710.

    Google Scholar

    [25] 何湘, 陈建平, 倪晓武, 等.非均匀等离子体对平面电磁波的衰减[J].强激光与粒子束, 2010, 22(9): 2115-2118.

    Google Scholar

    He X, Chen J P, Ni X W, et al. Attenuation of planar electromagnetic waves by inhomogeneous plasma[J]. High Power Laser and Particle Beams, 2010, 22(9): 2115-2118.

    Google Scholar

    [26] 马昊军, 王国林, 罗杰, 等. S—Ka频段电磁波在等离子体中传输特性的实验研究[J].物理学报, 2018, 67(2): 164-171.

    Google Scholar

    Ma H J, Wang G L, Luo J, et al. Experimental study of electromagnetic wave transmission characteristics in S-Ka band in plasma[J]. Acta Physica Sinica, 2018, 67(2): 164-171.

    Google Scholar

    [27] 邬润辉, 刘洪艳, 刘佳琪, 等.等离子体鞘套对C波段通信信号传输影响的试验[J].北京航空航天大学学报, 2013, 39(11): 1437-1442.

    Google Scholar

    Wu R H, Liu H Y, Liu J Q, et al. Experiment on influence of the communication signals transmission in plasma sheath[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1437-1442.

    Google Scholar

    [28] 刘丰, 刘江凡, 宫晨蓉, 等.太赫兹波在等离子鞘套中的传播[J].空间电子技术, 2013(4): 10-12.

    Google Scholar

    Liu F, Liu J F, Gong C R, et al. Transmission of Terahertz waves in plasma sheath[J]. Space Electronic Technology, 2013(4): 10-12.

    Google Scholar

    [29] Chen X Y, Shen F F, Liu Y M, et al. Improved scattering-matrix method and its application to analysis of electromagnetic wave reflected by reentry plasma sheath[J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1755-1767. doi: 10.1109/TPS.2018.2823539

    CrossRef Google Scholar

    [30] 李文浩, 田朝, 冯绅绅, 等.大气压等离子体射流装置及应用研究进展[J].真空科学与技术学报, 2018, 38(8): 695-707.

    Google Scholar

    Li W H, Tian C, Feng S S, et al. Advance in atmospheric pressure plasma jet and its applications[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 695-707.

    Google Scholar

    [31] van Gessel A F H, Carbone E A D, Bruggeman P J, et al. Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering[J]. Plasma Sources Science and Technology, 2012, 21(1): 015003. doi: 10.1088/0963-0252/21/1/015003

    CrossRef Google Scholar

    [32] Hübner S, Sousa J S, Puech V, et al. Electron properties in an atmospheric helium plasma jet determined by Thomson scattering[J]. Journal of Physics D: Applied Physics, 2014, 47(43): 432001. doi: 10.1088/0022-3727/47/43/432001

    CrossRef Google Scholar

    [33] He Y X, Wang Y Y, Xu D G, et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation[J]. Applied Physics B, 2018, 124(1): 16. doi: 10.1007/s00340-017-6887-4

    CrossRef Google Scholar

    [34] Ando A, Kurose T, Reymond V, et al. Electron density measurement of inductively coupled plasmas by terahertz time-domain spectroscopy (THz-TDS)[J]. Journal of Applied Physics, 2011, 110(7): 073303. doi: 10.1063/1.3633488

    CrossRef Google Scholar

  • Overview: Terahertz radiation is generally referred to the electromagnetic wave in the frequency range of 0.1 THz~10 THz, which is between millimeter wave and infrared wave in the electromagnetic spectrum, and it has the characteristics of coherence, instantaneity, low electron energy, and good penetrability. For a long time, terahertz wave has not been fully exploited and utilized compared with other bands of electromagnetic wave due to the lack of efficient terahertz radiation sources and high sensitivity terahertz detectors. In recent years, with the development of terahertz generation and detection technology, scientists have a deeper understanding of terahertz wave. Terahertz technology has also been widely used in more and more fields, such as terahertz security inspection, terahertz imaging, and terahertz communication. After entering the near space, a high-temperature and high-pressure environment is produced surrounding the hypersonic vehicle under the fierce interaction of the vehicle and atmosphere, which can ionize the gas around the vehicle, and thus produce a layer of plasma sheath covering the vehicle. The existence of plasma sheath will cause the distortion of communication signal and even interrupt it, here comes the well-known "blackout" problem. With the rapid development of aerospace industry, especially the utilization and development of near space, plasma sheath has become an urgent problem to be solved. Current research shows that increasing the frequency of electromagnetic wave higher than the plasma oscillation frequency can effectively reduce the shielding effect of plasma on electromagnetic wave, and the frequency of terahertz wave is much higher than that of microwave, so it can propagate better in plasma than microwave, which provides an effective method to solve the problem of plasma sheath. The NASA's RAM project in 1970s explored the attenuation effect of plasma medium on microwaves, and put forward various theories and methods for reducing the blackout issue. Since then, many attempts have been made to reduce the impact of plasma sheath on communication signal. However, many of the studies focus on microwave band. Terahertz wave has a desirable prospect in solving the blackout problem, so it is of great practical significance to study the propagation of terahertz wave in plasma. In this paper, the theoretical model of plasma is established, and the propagation of 0.1 THz~10 THz terahertz wave in plasma is simulated. Then the experiment of terahertz wave reflection imaging of target under plasma shelter are carried out. Both theory and experiment results show that terahertz wave has good penetration in plasma. This study will lay a theoretical foundation for solving the plasma blackout problem of hypersonic vehicle in near space.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint