Citation: |
|
[1] | Liu H B, Chen Y Q, Bastiaans G J, et al. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy[J]. Optics Express, 2006, 14(1): 415-423. doi: 10.1364/OPEX.14.000415 |
[2] | Hui X N, Zheng S L, Chen Y L, et al. Multiplexed millimeter wave communication with dual Orbital Angular Momentum (OAM) mode antennas[J]. Scientific Reports, 2015, 5(1): 10148. doi: 10.1038/srep10148 |
[3] | Ji Y B, Park C H, Kim H, et al. Feasibility of terahertz reflectometry for discrimination of human early gastric cancers[J]. Biomedical Optics Express, 2015, 6(4): 1398-1406. doi: 10.1364/BOE.6.001398 |
[4] | 叶麾, 郄明蓉, 曹寒雨, 等.太赫兹技术在医学科学中的应用及研究进展[J].光电工程, 2018, 45(5): 170528. doi: 10.12086/oee.2018.170528 Ye H, Xi M R, Cao H Y, et al. Applications of terahertz technology in medical science and research progress[J]. Opto-Electronic Engineering, 2018, 45(5): 170528. doi: 10.12086/oee.2018.170528 |
[5] | Zhong H, Xu J Z, Xie X, et al. Nondestructive defect identification with terahertz time-of-flight tomography[J]. IEEE Sensors Journal, 2005, 5(2): 203-208. doi: 10.1109/JSEN.2004.841341 |
[6] | Hebling J, Hoffmann M C, Hwang H Y, et al. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump-terahertz probe measurements[J]. Physical Review B, 2010, 81(3): 035201. doi: 10.1103/PhysRevB.81.035201 |
[7] | Planken P C M, Bakker H J. Towards time-resolved THz imaging[J]. Applied physics A, 2004, 78(4): 465-469. doi: 10.1007/s00339-003-2405-0 |
[8] | Mittleman D M, Hunsche S, Boivin L, et al. T-ray tomography[J]. Optics Letters, 1997, 22(12): 904-906. doi: 10.1364/OL.22.000904 |
[9] | Ferguson B, Wang S H, Gray D, et al. T-ray computed tomography[J]. Optics Letters, 2002, 27(15): 1312-1314. doi: 10.1364/OL.27.001312 |
[10] | Cocker T L, Jelic V, Gupta M, et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 2013, 7(8): 620-625. doi: 10.1038/nphoton.2013.151 |
[11] | Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105. doi: 10.1063/1.2989126 |
[12] | Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716-1718. doi: 10.1364/OL.20.001716 |
[13] | Wu Q, Hewitt T D, Zhang X C. Two-dimensional electro-optic imaging of THz beams[J]. Applied Physics Letters, 1996, 69(8): 1026-1028. doi: 10.1063/1.116920 |
[14] |
王新柯.太赫兹实时成像中关键技术的研究与改进[D].哈尔滨: 哈尔滨工业大学, 2011: 48-50.
Wang X K. Studies and improvement of key techniques in THz real-time imaging[D]. Harbin: Harbin Institute of Technology, 2011: 48-50. |
[15] | Jiang Z P, Xu X G, Zhang X C. Improvement of terahertz imaging with a dynamic subtraction technique[J]. Applied Optics, 2000, 39(17): 2982-2987. doi: 10.1364/AO.39.002982 |
[16] | Yasui T, Sawanaka K I, Ihara A, et al. Real-time terahertz color scanner for moving objects[J]. Optics Express, 2008, 16(2): 1208-1221. doi: 10.1364/OE.16.001208 |
[17] | Wang X K, Cui Y, Hu D, et al. Terahertz quasi-near-field real-time imaging[J]. Optics Communications, 2009, 282(24): 4683-4687. doi: 10.1016/j.optcom.2009.09.004 |
[18] | Wang X K, Cui Y, Sun W F, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communications, 2010, 283(23): 4626-4632. doi: 10.1016/j.optcom.2010.07.010 |
[19] | Wang X K, Cui Y, Sun W F, et al. Terahertz polarization real-time imaging based on balanced electro-optic detection[J]. Journal of the Optical Society of America A, 2010, 27(11): 2387-2393. doi: 10.1364/JOSAA.27.002387 |
[20] | Zhang R X, Cui Y, Sun W F, et al. Polarization information for terahertz imaging[J]. Applied Optics, 2008, 47(34): 6422-6427. doi: 10.1364/AO.47.006422 |
[21] | Blanchard F, DoiA, Tanaka T, et al. Real-time terahertz near-field microscope[J]. Optics Express, 2011, 19(9): 8277-8284. doi: 10.1364/OE.19.008277 |
[22] | Wang X K, Wang S, Xie Z W, et al. Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization[J]. Optics Express, 2014, 22(20): 24622-24634. doi: 10.1364/OE.22.024622 |
[23] | He J W, Wang X K, Hu D, et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 2013, 21(17): 20230-20239. doi: 10.1364/OE.21.020230 |
[24] | Zhong H, Redo-Sanchez A, Zhang X C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system[J]. Optics Express, 2006, 14(20): 9130-9141. doi: 10.1364/OE.14.009130 |
[25] | Schirmer M, Fujio M, Minami M, et al. Biomedical applications of a real-time terahertz color scanner[J]. Biomedical Optics Express, 2010, 1(2): 354-366. doi: 10.1364/BOE.1.000354 |
[26] | Usami M, Yamashita M, Fukushima K, et al. Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique[J]. Applied Physics Letters, 2005, 86(14): 141109. doi: 10.1063/1.1899259 |
[27] | Wu Q, Werley C A, Lin K H, et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide[J]. Optics Express, 2009, 17(11): 9219-9225. doi: 10.1364/OE.17.009219 |
[28] | Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713 |
[29] | Hu D, Wang X K, Feng S F, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2): 186-191. doi: 10.1002/adom.201200044 |
[30] | Wang S, Wang X K, Kan Q, et al. Spin-selected focusing and imaging based on metasurface lens[J]. Optics Express, 2015, 23(20): 26434-26441. doi: 10.1364/OE.23.026434 |
[31] | He J W, Wang S, Xie Z W, et al. Abruptly autofocusing terahertz waves with meta-hologram[J]. Optics Letters, 2016, 41(12): 2787-2790. doi: 10.1364/OL.41.002787 |
[32] | Wang B, Quan B G, He J W, et al. Wavelength de-multiplexing metasurface hologram[J]. Scientific Reports, 2016, 6(1): 35657. doi: 10.1038/srep35657 |
[33] | Ge S J, Chen P, Shen Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal[J]. Optics Express, 2017, 25(11): 12349-12356. doi: 10.1364/OE.25.012349 |
[34] | Jia M, Wang Z, Li H T, et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces[J]. Light: Science & Applications, 2019, 8: 16. |
[35] | Khonina S N, Kazanskiy N L, Volotovsky S G. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system[J]. Journal of Modern Optics, 2011, 58(9): 748-760. doi: 10.1080/09500340.2011.568710 |
[36] | Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501. doi: 10.1103/PhysRevLett.58.1499 |
[37] | Arlt J, Padgett M J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam[J]. Optics Letters, 2000, 25(4): 191-193. doi: 10.1364/OL.25.000191 |
[38] | Wang X K, Shi J, Sun W F, et al. Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations[J]. Optics Express, 2016, 24(7): 7178-7190. doi: 10.1364/OE.24.007178 |
[39] | Wu Z, Wang X K, Sun W F, et al. Vector characterization of zero-order terahertz Bessel beams with linear and circular polarizations[J]. Scientific Reports, 2017, 7(1): 13929. doi: 10.1038/s41598-017-12524-y |
[40] | Martelli P, Tacca M, Gatto A, et al. Gouy phase shift in nondiffracting Bessel beams[J]. Optics Express, 2010, 18(7): 7108-7120. doi: 10.1364/OE.18.007108 |
[41] | Li H T, Wang X K, Wang S, et al. Vector measurement and performance tuning of a terahertz bottle beam[J]. Scientific Reports, 2018, 8(1): 13177. doi: 10.1038/s41598-018-31250-7 |
[42] | Bitman A, Moshe I, Zalevsky Z, et al. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams[J]. Optics Letters, 2012, 37(19): 4164-4166. doi: 10.1364/OL.37.004164 |
[43] | Nanni E A, Huang W R, Hong K H, et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 2015, 6(1): 8486. doi: 10.1038/ncomms9486 |
[44] | Maier S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007: 21-37. |
[45] | Zhu W Q, Nahata A. Electric field vector characterization of terahertz surface plasmons[J]. Optics Express, 2007, 15(9): 5616-5624. doi: 10.1364/OE.15.005616 |
[46] | Adam A J L, Brok J M, Seo M A, et al. Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures[J]. Optics Express, 2008, 16(10): 7407-7417. doi: 10.1364/OE.16.007407 |
[47] | Wang X K, Wang S, Sun W F, et al. Visualization of terahertz surface waves propagation on metal foils[J]. Scientific Reports, 2016, 6(1): 18768. doi: 10.1038/srep18768 |
[48] | Li H T, Wang X K, Wang S, et al. Realization and characterization of terahertz surface plasmon light capsules[J]. Applied Physics Letters, 2019, 114(9): 091110. doi: 10.1063/1.5085862 |
[49] | Yasuda T, Kawada Y, Toyoda H, et al. Terahertz movies of internal transmission images[J]. Optics Express, 2007, 15(23): 15583-15588. doi: 10.1364/OE.15.015583 |
[50] | Zhang L L, Karpowicz N, Zhang C L, et al. Real-time nondestructive imaging with THz waves[J]. Optics Communications, 2008, 281(6): 1473-1475. doi: 10.1016/j.optcom.2007.11.063 |
[51] | Abraham E, Cahyadi H, Brossard M, et al. Development of a wavefront sensor for terahertz pulses[J]. Optics Express, 2016, 24(5): 5203-5211. doi: 10.1364/OE.24.005203 |
[52] | Wang X K, Xiong W, Sun W F, et al. Coaxial waveguide mode reconstruction and analysis with THz digital holography[J]. Optics Express, 2012, 20(7): 7706-7715. doi: 10.1364/OE.20.007706 |
[53] | Wang X K, Sun W F, Cui Y, et al. Complete presentation of the Gouy phase shift with the THz digital holography[J]. Optics Express, 2013, 21(2): 2337-2346. doi: 10.1364/OE.21.002337 |
[54] | Ushakov A, Chizhov P, Bukin V, et al. Broadband in-line terahertz 2D imaging: comparative study with time-of-flight, cross-correlation, and Fourier transform data processing[J]. Journal of the Optical Society of America B, 2018, 35(5): 1159-1164. doi: 10.1364/JOSAB.35.001159 |
[55] | 西迪科, 张维, 李卓, 等.用参量法通过LiNbO3晶体产生太赫兹的理论设计[J].光电工程, 2006, 33(3): 114-118. doi: 10.3969/j.issn.1003-501X.2006.03.026 Siddique M, Zhang W, Li Z, et al. Theoretical design of terahertz-wave parametric oscillator using LiNbO3 crystal[J]. Opto-Electronic Engineering, 2006, 33(3): 114-118. doi: 10.3969/j.issn.1003-501X.2006.03.026 |
[56] | Behnken B N, Karunasiri G, Chamberlin D R, et al. Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera[J]. Optics Letters, 2008, 33(5): 440-442. doi: 10.1364/OL.33.000440 |
[57] | Boppel S, Lisauskas A, Max A, et al. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging[J]. Optics Letters, 2012, 37(4): 536-538. doi: 10.1364/OL.37.000536 |
[58] | Xue K, Li Q, Li Y D, et al. Continuous-wave terahertz in-line digital holography[J]. Optics Letters, 2012, 37(15): 3228-3230. doi: 10.1364/OL.37.003228 |
[59] | Rong L, Latychevskaia T, Wang D Y, et al. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation[J]. Optics Express, 2014, 22(14): 17236-17245. doi: 10.1364/OE.22.017236 |
[60] | 李斌, 王大勇, 周逊, 等.基于面阵式探测器连续太赫兹波三维层析成像[J].太赫兹科学与电子信息学报, 2017, 15(1): 21-25. Li B, Wang D Y, Zhou X, et al. A continuous-wave terahertz 3-D computed tomography using a pyroelectric array detector[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(1): 21-25. |
[61] | 罗木昌, 孙建东, 张志鹏, 等.基于AlGaN/GaN场效应晶体管的太赫兹焦平面成像传感器[J].红外与激光工程, 2018, 47(3): 0320001. Luo M C, Sun J D, Zhang Z P, et al. Terahertz focal plane imaging array sensor based on AlGaN/GaN field effect transistors[J]. Infrared and Laser Engineering, 2018, 47(3): 0320001. |
Overview: As a class of novel far-infrared testing technology, terahertz (THz) imaging has been rapidly developed for recent decades due to characteristics of the THz radiation, such as low photon energy, broad bandwidth, and high transmission to non-polar materials. Notably, the THz pulsed focal-plane imaging technique has become an important composition in all kinds of THz imaging methods because of its obvious measurement advantages. When the THz pulsed focal-plane imaging is employed, two-dimensional THz information of a substance can be accurately acquired in a single measurement and the raster scan process in traditional THz imaging is effectively avoided, which leads to the reduction of the experimental time as well as the enhancements of the measurement stability and sampling ratio. In this review, the technique innovations and application explorations of THz pulsed focal-plane imaging are introduced. This THz imaging technique was firstly proposed in 1996 and various means have been applied to improve its performance. With the development of the imaging technique, the super-thin sensor crystal and the quasi-near-field detection are introduced to improve the imaging spatial resolution; the dynamics subtraction and the balanced electro-optic detection are applied to enhance the signal-to-noise ratio of the imaging system. In addition, this imaging system can individually measure different THz polarization components (Ex, Ey, and Ez) by varying the polarization of the probe beam and using the sensor crystals with different crystalline orientations. Currently, it can be said that almost all of THz wave-front information can be obtained by using this imaging technique. With the maturation of the imaging technique, it has been applied into various industrial and fundamental research fields. Utilizing the spectroscopic measurement ability of the imaging system, identification of different chemical and biological samples can be achieved. Utilizing the vectorial measurement ability of the imaging system, the function of THz meta-surface devices, characterizations of THz special beams, and observations of THz surface electromagnetic waves have been demonstrated. Besides, this imaging technique has been also applied to measure transmission modes of THz waveguides, inspections to concealed objects, and so on. Of course, there is still much room for the future improvement of this imaging technique, such as the further enhancement of the signal-to-noise ratio, the enlargement of the imaging region, and the simplification of the optical configuration. Nevertheless, it can be expected that the imaging technique will show its tremendous application potentials in the future.
Comparison of THz pulsed focal-plane imaging and THz raster scan imaging[12-13]. (a) Scheme of a THz raster scan imaging system and (b) THz images of a leaf by THz raster scan imaging; (c) Scheme of a THz pulsed focal-plane imaging system and (d) THz intensity distribution obtained by THz pulsed focal-plane imaging
THz pulsed focal-line imaging[16]. (a) Scheme of a THz pulsed focal-line imaging system; (b) Photo of a metal hole array and its THz images at 0.407 THz, 0.815 THz, 1.600 THz
Improvement of a THz pulsed focal-plane imaging system[17-19]. (a) Improved THz pulsed focal-plane imaging system; (b) Quasi-near-field detection technique; (c) Balanced electro-optic detection technique; (d) Polarization detection technique
THz pulsed focal-plane microscopy[21]. (a) Scheme of a THz pulsed focal-plane microscopy system; (b) Visible and THz images of a double slit metallic mask; (c) THz intensity profile curve extracted along the dashed line in (b)
Vectorial measurement of a THz field by THz pulsed focal-plane imaging[22]. (a) THz pulsed focal-plane imaging system in which a < 100> ZnTe is selected as the sensor crystal; (b) Evolutions of the Ez amplitude and phase for a converging linearly polarized THz field and (c) evolution of the Ez complex field for a focused left circularly polarized THz field
Spectroscopic identification by THz pulsed focal-plane imaging[24-25]. (a) Inspection of different chemicals by reflective THz pulsed focal-plane imaging; (b) Visible and THz images of 2, 4-DNT, theopylline, RDX, glutamic acid, and glass samples; (c) Inspection to biological tissues by THz pulsed focal-line imaging; (d) Visible and THz images of a human tooth slice
Function characterization of metasurface elements by THz pulsed focal-plane imaging[29-32]. (a) Imaging function characterization of a THz metasurface lens; (b) Polarization-dependent response of a THz metasurface photonic Hall element; (c) Function characterization of a THz metasurface ring Airy beam modulator; (d) Function characterization of a wavelength de-multiplexing THz metasurface hologram
Vectorial characterization of THz special beams by THz pulsed focal-plane imaging[38-39, 41]. (a) Vectorial characterization of a THz vortex beam; (b) Vectorial characterization of a THz Bessel beam; (c) Vectorial characterization of a THz bottle beam
Characterization of THz surface waves by THz pulsed focal-plane imaging[47-48]. (a) Characterization of a THz surface converging beam; (b) Characterization of a THz surface bottle beam