Wang X K, Zhang Y. Advancement and application of terahertz pulsed focal-plane imaging technique[J]. Opto-Electron Eng, 2020, 47(5): 190413. doi: 10.12086/oee.2020.190413
Citation: Wang X K, Zhang Y. Advancement and application of terahertz pulsed focal-plane imaging technique[J]. Opto-Electron Eng, 2020, 47(5): 190413. doi: 10.12086/oee.2020.190413

Advancement and application of terahertz pulsed focal-plane imaging technique

    Fund Project: Supported by National Natural Science Foundation of China (11474206, 11404224, 11774243, 11774246)
More Information
  • As an important composition of terahertz (THz) technology, THz pulsed focal-plane imaging has been paid widely attention since it was invented. Until now, researchers have introduced all kinds of methods to enhance the performance of this imaging technique. Simultaneously, this imaging technique has been tried to apply into various industrial and fundamental research fields. In this paper, recent technique improvements and application researches for THz pulsed focal-plane imaging are reviewed, including the spatial resolution enhancement, signal-to-noise ratio improvement, information acquiring ability as well as applications of this imaging technique in spectroscopic identification inspections, function demonstrations of meta-surface devices, measurements of THz special beams, observations of THz surface electromagnetic waves, and so on. The aim of this paper is to push the technique innovation and application exploration of THz pulsed focal-plane imaging.
  • 加载中
  • [1] Liu H B, Chen Y Q, Bastiaans G J, et al. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy[J]. Optics Express, 2006, 14(1): 415-423. doi: 10.1364/OPEX.14.000415

    CrossRef Google Scholar

    [2] Hui X N, Zheng S L, Chen Y L, et al. Multiplexed millimeter wave communication with dual Orbital Angular Momentum (OAM) mode antennas[J]. Scientific Reports, 2015, 5(1): 10148. doi: 10.1038/srep10148

    CrossRef Google Scholar

    [3] Ji Y B, Park C H, Kim H, et al. Feasibility of terahertz reflectometry for discrimination of human early gastric cancers[J]. Biomedical Optics Express, 2015, 6(4): 1398-1406. doi: 10.1364/BOE.6.001398

    CrossRef Google Scholar

    [4] 叶麾, 郄明蓉, 曹寒雨, 等.太赫兹技术在医学科学中的应用及研究进展[J].光电工程, 2018, 45(5): 170528. doi: 10.12086/oee.2018.170528

    CrossRef Google Scholar

    Ye H, Xi M R, Cao H Y, et al. Applications of terahertz technology in medical science and research progress[J]. Opto-Electronic Engineering, 2018, 45(5): 170528. doi: 10.12086/oee.2018.170528

    CrossRef Google Scholar

    [5] Zhong H, Xu J Z, Xie X, et al. Nondestructive defect identification with terahertz time-of-flight tomography[J]. IEEE Sensors Journal, 2005, 5(2): 203-208. doi: 10.1109/JSEN.2004.841341

    CrossRef Google Scholar

    [6] Hebling J, Hoffmann M C, Hwang H Y, et al. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump-terahertz probe measurements[J]. Physical Review B, 2010, 81(3): 035201. doi: 10.1103/PhysRevB.81.035201

    CrossRef Google Scholar

    [7] Planken P C M, Bakker H J. Towards time-resolved THz imaging[J]. Applied physics A, 2004, 78(4): 465-469. doi: 10.1007/s00339-003-2405-0

    CrossRef Google Scholar

    [8] Mittleman D M, Hunsche S, Boivin L, et al. T-ray tomography[J]. Optics Letters, 1997, 22(12): 904-906. doi: 10.1364/OL.22.000904

    CrossRef Google Scholar

    [9] Ferguson B, Wang S H, Gray D, et al. T-ray computed tomography[J]. Optics Letters, 2002, 27(15): 1312-1314. doi: 10.1364/OL.27.001312

    CrossRef Google Scholar

    [10] Cocker T L, Jelic V, Gupta M, et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 2013, 7(8): 620-625. doi: 10.1038/nphoton.2013.151

    CrossRef Google Scholar

    [11] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105. doi: 10.1063/1.2989126

    CrossRef Google Scholar

    [12] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716-1718. doi: 10.1364/OL.20.001716

    CrossRef Google Scholar

    [13] Wu Q, Hewitt T D, Zhang X C. Two-dimensional electro-optic imaging of THz beams[J]. Applied Physics Letters, 1996, 69(8): 1026-1028. doi: 10.1063/1.116920

    CrossRef Google Scholar

    [14] 王新柯.太赫兹实时成像中关键技术的研究与改进[D].哈尔滨: 哈尔滨工业大学, 2011: 48-50.

    Google Scholar

    Wang X K. Studies and improvement of key techniques in THz real-time imaging[D]. Harbin: Harbin Institute of Technology, 2011: 48-50.http://cdmd.cnki.com.cn/Article/CDMD-10213-1012000453.htm

    Google Scholar

    [15] Jiang Z P, Xu X G, Zhang X C. Improvement of terahertz imaging with a dynamic subtraction technique[J]. Applied Optics, 2000, 39(17): 2982-2987. doi: 10.1364/AO.39.002982

    CrossRef Google Scholar

    [16] Yasui T, Sawanaka K I, Ihara A, et al. Real-time terahertz color scanner for moving objects[J]. Optics Express, 2008, 16(2): 1208-1221. doi: 10.1364/OE.16.001208

    CrossRef Google Scholar

    [17] Wang X K, Cui Y, Hu D, et al. Terahertz quasi-near-field real-time imaging[J]. Optics Communications, 2009, 282(24): 4683-4687. doi: 10.1016/j.optcom.2009.09.004

    CrossRef Google Scholar

    [18] Wang X K, Cui Y, Sun W F, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communications, 2010, 283(23): 4626-4632. doi: 10.1016/j.optcom.2010.07.010

    CrossRef Google Scholar

    [19] Wang X K, Cui Y, Sun W F, et al. Terahertz polarization real-time imaging based on balanced electro-optic detection[J]. Journal of the Optical Society of America A, 2010, 27(11): 2387-2393. doi: 10.1364/JOSAA.27.002387

    CrossRef Google Scholar

    [20] Zhang R X, Cui Y, Sun W F, et al. Polarization information for terahertz imaging[J]. Applied Optics, 2008, 47(34): 6422-6427. doi: 10.1364/AO.47.006422

    CrossRef Google Scholar

    [21] Blanchard F, DoiA, Tanaka T, et al. Real-time terahertz near-field microscope[J]. Optics Express, 2011, 19(9): 8277-8284. doi: 10.1364/OE.19.008277

    CrossRef Google Scholar

    [22] Wang X K, Wang S, Xie Z W, et al. Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization[J]. Optics Express, 2014, 22(20): 24622-24634. doi: 10.1364/OE.22.024622

    CrossRef Google Scholar

    [23] He J W, Wang X K, Hu D, et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 2013, 21(17): 20230-20239. doi: 10.1364/OE.21.020230

    CrossRef Google Scholar

    [24] Zhong H, Redo-Sanchez A, Zhang X C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system[J]. Optics Express, 2006, 14(20): 9130-9141. doi: 10.1364/OE.14.009130

    CrossRef Google Scholar

    [25] Schirmer M, Fujio M, Minami M, et al. Biomedical applications of a real-time terahertz color scanner[J]. Biomedical Optics Express, 2010, 1(2): 354-366. doi: 10.1364/BOE.1.000354

    CrossRef Google Scholar

    [26] Usami M, Yamashita M, Fukushima K, et al. Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique[J]. Applied Physics Letters, 2005, 86(14): 141109. doi: 10.1063/1.1899259

    CrossRef Google Scholar

    [27] Wu Q, Werley C A, Lin K H, et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide[J]. Optics Express, 2009, 17(11): 9219-9225. doi: 10.1364/OE.17.009219

    CrossRef Google Scholar

    [28] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [29] Hu D, Wang X K, Feng S F, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2): 186-191. doi: 10.1002/adom.201200044

    CrossRef Google Scholar

    [30] Wang S, Wang X K, Kan Q, et al. Spin-selected focusing and imaging based on metasurface lens[J]. Optics Express, 2015, 23(20): 26434-26441. doi: 10.1364/OE.23.026434

    CrossRef Google Scholar

    [31] He J W, Wang S, Xie Z W, et al. Abruptly autofocusing terahertz waves with meta-hologram[J]. Optics Letters, 2016, 41(12): 2787-2790. doi: 10.1364/OL.41.002787

    CrossRef Google Scholar

    [32] Wang B, Quan B G, He J W, et al. Wavelength de-multiplexing metasurface hologram[J]. Scientific Reports, 2016, 6(1): 35657. doi: 10.1038/srep35657

    CrossRef Google Scholar

    [33] Ge S J, Chen P, Shen Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal[J]. Optics Express, 2017, 25(11): 12349-12356. doi: 10.1364/OE.25.012349

    CrossRef Google Scholar

    [34] Jia M, Wang Z, Li H T, et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces[J]. Light: Science & Applications, 2019, 8: 16.

    Google Scholar

    [35] Khonina S N, Kazanskiy N L, Volotovsky S G. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system[J]. Journal of Modern Optics, 2011, 58(9): 748-760. doi: 10.1080/09500340.2011.568710

    CrossRef Google Scholar

    [36] Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501. doi: 10.1103/PhysRevLett.58.1499

    CrossRef Google Scholar

    [37] Arlt J, Padgett M J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam[J]. Optics Letters, 2000, 25(4): 191-193. doi: 10.1364/OL.25.000191

    CrossRef Google Scholar

    [38] Wang X K, Shi J, Sun W F, et al. Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations[J]. Optics Express, 2016, 24(7): 7178-7190. doi: 10.1364/OE.24.007178

    CrossRef Google Scholar

    [39] Wu Z, Wang X K, Sun W F, et al. Vector characterization of zero-order terahertz Bessel beams with linear and circular polarizations[J]. Scientific Reports, 2017, 7(1): 13929. doi: 10.1038/s41598-017-12524-y

    CrossRef Google Scholar

    [40] Martelli P, Tacca M, Gatto A, et al. Gouy phase shift in nondiffracting Bessel beams[J]. Optics Express, 2010, 18(7): 7108-7120. doi: 10.1364/OE.18.007108

    CrossRef Google Scholar

    [41] Li H T, Wang X K, Wang S, et al. Vector measurement and performance tuning of a terahertz bottle beam[J]. Scientific Reports, 2018, 8(1): 13177. doi: 10.1038/s41598-018-31250-7

    CrossRef Google Scholar

    [42] Bitman A, Moshe I, Zalevsky Z, et al. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams[J]. Optics Letters, 2012, 37(19): 4164-4166. doi: 10.1364/OL.37.004164

    CrossRef Google Scholar

    [43] Nanni E A, Huang W R, Hong K H, et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 2015, 6(1): 8486. doi: 10.1038/ncomms9486

    CrossRef Google Scholar

    [44] Maier S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007: 21-37.

    Google Scholar

    [45] Zhu W Q, Nahata A. Electric field vector characterization of terahertz surface plasmons[J]. Optics Express, 2007, 15(9): 5616-5624. doi: 10.1364/OE.15.005616

    CrossRef Google Scholar

    [46] Adam A J L, Brok J M, Seo M A, et al. Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures[J]. Optics Express, 2008, 16(10): 7407-7417. doi: 10.1364/OE.16.007407

    CrossRef Google Scholar

    [47] Wang X K, Wang S, Sun W F, et al. Visualization of terahertz surface waves propagation on metal foils[J]. Scientific Reports, 2016, 6(1): 18768. doi: 10.1038/srep18768

    CrossRef Google Scholar

    [48] Li H T, Wang X K, Wang S, et al. Realization and characterization of terahertz surface plasmon light capsules[J]. Applied Physics Letters, 2019, 114(9): 091110. doi: 10.1063/1.5085862

    CrossRef Google Scholar

    [49] Yasuda T, Kawada Y, Toyoda H, et al. Terahertz movies of internal transmission images[J]. Optics Express, 2007, 15(23): 15583-15588. doi: 10.1364/OE.15.015583

    CrossRef Google Scholar

    [50] Zhang L L, Karpowicz N, Zhang C L, et al. Real-time nondestructive imaging with THz waves[J]. Optics Communications, 2008, 281(6): 1473-1475. doi: 10.1016/j.optcom.2007.11.063

    CrossRef Google Scholar

    [51] Abraham E, Cahyadi H, Brossard M, et al. Development of a wavefront sensor for terahertz pulses[J]. Optics Express, 2016, 24(5): 5203-5211. doi: 10.1364/OE.24.005203

    CrossRef Google Scholar

    [52] Wang X K, Xiong W, Sun W F, et al. Coaxial waveguide mode reconstruction and analysis with THz digital holography[J]. Optics Express, 2012, 20(7): 7706-7715. doi: 10.1364/OE.20.007706

    CrossRef Google Scholar

    [53] Wang X K, Sun W F, Cui Y, et al. Complete presentation of the Gouy phase shift with the THz digital holography[J]. Optics Express, 2013, 21(2): 2337-2346. doi: 10.1364/OE.21.002337

    CrossRef Google Scholar

    [54] Ushakov A, Chizhov P, Bukin V, et al. Broadband in-line terahertz 2D imaging: comparative study with time-of-flight, cross-correlation, and Fourier transform data processing[J]. Journal of the Optical Society of America B, 2018, 35(5): 1159-1164. doi: 10.1364/JOSAB.35.001159

    CrossRef Google Scholar

    [55] 西迪科, 张维, 李卓, 等.用参量法通过LiNbO3晶体产生太赫兹的理论设计[J].光电工程, 2006, 33(3): 114-118. doi: 10.3969/j.issn.1003-501X.2006.03.026

    CrossRef Google Scholar

    Siddique M, Zhang W, Li Z, et al. Theoretical design of terahertz-wave parametric oscillator using LiNbO3 crystal[J]. Opto-Electronic Engineering, 2006, 33(3): 114-118. doi: 10.3969/j.issn.1003-501X.2006.03.026

    CrossRef Google Scholar

    [56] Behnken B N, Karunasiri G, Chamberlin D R, et al. Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera[J]. Optics Letters, 2008, 33(5): 440-442. doi: 10.1364/OL.33.000440

    CrossRef Google Scholar

    [57] Boppel S, Lisauskas A, Max A, et al. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging[J]. Optics Letters, 2012, 37(4): 536-538. doi: 10.1364/OL.37.000536

    CrossRef Google Scholar

    [58] Xue K, Li Q, Li Y D, et al. Continuous-wave terahertz in-line digital holography[J]. Optics Letters, 2012, 37(15): 3228-3230. doi: 10.1364/OL.37.003228

    CrossRef Google Scholar

    [59] Rong L, Latychevskaia T, Wang D Y, et al. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation[J]. Optics Express, 2014, 22(14): 17236-17245. doi: 10.1364/OE.22.017236

    CrossRef Google Scholar

    [60] 李斌, 王大勇, 周逊, 等.基于面阵式探测器连续太赫兹波三维层析成像[J].太赫兹科学与电子信息学报, 2017, 15(1): 21-25.

    Google Scholar

    Li B, Wang D Y, Zhou X, et al. A continuous-wave terahertz 3-D computed tomography using a pyroelectric array detector[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(1): 21-25.

    Google Scholar

    [61] 罗木昌, 孙建东, 张志鹏, 等.基于AlGaN/GaN场效应晶体管的太赫兹焦平面成像传感器[J].红外与激光工程, 2018, 47(3): 0320001.

    Google Scholar

    Luo M C, Sun J D, Zhang Z P, et al. Terahertz focal plane imaging array sensor based on AlGaN/GaN field effect transistors[J]. Infrared and Laser Engineering, 2018, 47(3): 0320001.

    Google Scholar

  • Overview: As a class of novel far-infrared testing technology, terahertz (THz) imaging has been rapidly developed for recent decades due to characteristics of the THz radiation, such as low photon energy, broad bandwidth, and high transmission to non-polar materials. Notably, the THz pulsed focal-plane imaging technique has become an important composition in all kinds of THz imaging methods because of its obvious measurement advantages. When the THz pulsed focal-plane imaging is employed, two-dimensional THz information of a substance can be accurately acquired in a single measurement and the raster scan process in traditional THz imaging is effectively avoided, which leads to the reduction of the experimental time as well as the enhancements of the measurement stability and sampling ratio. In this review, the technique innovations and application explorations of THz pulsed focal-plane imaging are introduced. This THz imaging technique was firstly proposed in 1996 and various means have been applied to improve its performance. With the development of the imaging technique, the super-thin sensor crystal and the quasi-near-field detection are introduced to improve the imaging spatial resolution; the dynamics subtraction and the balanced electro-optic detection are applied to enhance the signal-to-noise ratio of the imaging system. In addition, this imaging system can individually measure different THz polarization components (Ex, Ey, and Ez) by varying the polarization of the probe beam and using the sensor crystals with different crystalline orientations. Currently, it can be said that almost all of THz wave-front information can be obtained by using this imaging technique. With the maturation of the imaging technique, it has been applied into various industrial and fundamental research fields. Utilizing the spectroscopic measurement ability of the imaging system, identification of different chemical and biological samples can be achieved. Utilizing the vectorial measurement ability of the imaging system, the function of THz meta-surface devices, characterizations of THz special beams, and observations of THz surface electromagnetic waves have been demonstrated. Besides, this imaging technique has been also applied to measure transmission modes of THz waveguides, inspections to concealed objects, and so on. Of course, there is still much room for the future improvement of this imaging technique, such as the further enhancement of the signal-to-noise ratio, the enlargement of the imaging region, and the simplification of the optical configuration. Nevertheless, it can be expected that the imaging technique will show its tremendous application potentials in the future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint