Citation: |
|
[1] | Abbott D, Zhang X C. Special issue on T-ray imaging, sensing, and retection[J]. Proceedings of the IEEE, 2007, 95(8): 1509–1513. doi: 10.1109/JPROC.2007.900894 |
[2] | Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716–1718. doi: 10.1364/OL.20.001716 |
[3] | Shi S C, Paine S, Yao Q J, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica[J]. Nature Astronomy, 2016, 1: 0001. |
[4] | Luukanen A, Appleby R, Kemp M, et al. Millimeter-wave and terahertz imaging in security applications[M]//Peiponen K E, Zeitler A, Kuwata-Gonokami M. Terahertz Spectroscopy and Imaging. Berlin, Heidelberg: Springer, 2012: 491–520. |
[5] | Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810–824. doi: 10.1016/j.tibtech.2016.04.008 |
[6] | Zhou Z T, Zhou T, Zhang S Q, et al. Multicolor T-ray imaging using multispectral metamaterials[J]. Advanced Science, 2018, 5(7): 1700982. doi: 10.1002/advs.201700982 |
[7] | Abraham E, Younus A, Delagnes J C, et al. Non-invasive investigation of art paintings by terahertz imaging[J]. Applied Physics A, 2010, 100(3): 585–590. doi: 10.1007/s00339-010-5642-z |
[8] | Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantum-well photodetector[J]. Applied Physics Letters, 2004, 84(20): 4068–4070. doi: 10.1063/1.1751620 |
[9] | Guo X G, Tan Z Y, Cao J C, et al. Many-body effects on terahertz quantum well detectors[J]. Applied Physics Letters, 2009, 94(20): 201101. doi: 10.1063/1.3134485 |
[10] | Guo X G, Cao J C, Zhang R, et al. Recent progress in terahertz quantum-well photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500508. doi: 10.1109/JSTQE.2012.2201136 |
[11] | 郭旭光, 顾亮亮, 符张龙, 等.太赫兹量子阱探测器研究[J].激光与光电子学进展, 2015, 52(9): 092302. Guo X G, Gu L L, Fu Z L, et al. Research on terahertz quantum-well photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092302. |
[12] | Zhang S, Wang T M, Hao M R, et al. Terahertz quantum-well photodetectors: design, performance, and improvements[J]. Journal of Applied Physics, 2013, 114(19): 194507. doi: 10.1063/1.4826625 |
[13] | 邵棣祥, 郭旭光, 张戎, 等.多体效应对太赫兹量子阱探测器的影响[J].光学学报, 2017, 37(10): 1004001. Shao D X, Guo X G, Zhang R, et al. Influence of many-body effect on terahertz quantum well photodetectors[J]. Acta Optica Sinica, 2017, 37(10): 1004001. |
[14] | Zhang Y M, Chen H B, Li Z F, et al. The optical coupling improvement of THz quantum well infrared photodetectors based on the plasmonic induced near-field effect[J]. Physica B: Condensed Matter, 2010, 405(2): 552–554. doi: 10.1016/j.physb.2009.09.063 |
[15] | Zhang R, Guo X G, Song C Y, et al. Metal-grating-coupled terahertz quantum-well photodetectors[J]. IEEE Electron Device Letters, 2011, 32(5): 659–661. doi: 10.1109/LED.2011.2112632 |
[16] | Zhang R, Guo X G, Cao J C. Coupling efficiency of lamellar gratings for terahertz quantum-well photodetectors[J]. Journal of the Korean Physical Society, 2012, 60(8): 1233–1237. doi: 10.3938/jkps.60.1233 |
[17] | Zhang R, Guo X G, Cao J C, et al. Asymmetric Fabry-Perot oscillations in metal grating-coupled terahertz quantum well photodetectors[J]. IEEE Journal of Quantum Electronics, 2012, 48(9): 1214–1219. doi: 10.1109/JQE.2012.2206798 |
[18] | Zhang R, Fu Z L, Gu L L, et al. Terahertz quantum well photodetectors with reflection-grating couplers[J]. Applied Physics Letters, 2014, 105(23): 231123. doi: 10.1063/1.4904221 |
[19] | Zhang R, Shao D X, Fu Z L, et al. Terahertz quantum well photodetectors with metal-grating couplers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 3800407. |
[20] | Li L J, Bai P, Zhang Y H, et al. Optical field simulation of edge coupled terahertz quantum well photodetectors[J]. AIP Advances, 2018, 8(3): 035214. doi: 10.1063/1.5011956 |
[21] | Zhang Z Z, Fu Z L, Guo X G, et al. 4.3 THz quantum-well photodetectors with high detection sensitivity[J]. Chinese Physics B, 2018, 27(3): 030701. doi: 10.1088/1674-1056/27/3/030701 |
[22] | Shao D X, Zhang R, Fu Z L, et al. High responsivity random metal grating couplers for terahertz quantum well photodetectors[J]. Semiconductor Science and Technology, 2019, 34(7): 075029. doi: 10.1088/1361-6641/ab0a4a |
[23] | Palaferri D, Todorov Y, Chen Y N, et al. Patch antenna terahertz photodetectors[J]. Applied Physics Letters, 2015, 106: 161102. doi: 10.1063/1.4918983 |
[24] | Li H, Wan W J, Tan Z Y, et al. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors[J]. Scientific Reports, 2017, 7(1): 3452. doi: 10.1038/s41598-017-03787-6 |
[25] | Tan Z Y, Li H, Wan W J, et al. Direct detection of a fast modulated terahertz light with a spectrally matched quantum-well photodetector[J]. Electronics Letters, 2017, 53(2): 91–93. doi: 10.1049/el.2016.3099 |
[26] | 张真真, 黎华, 曹俊诚.高速太赫兹探测器[J].物理学报, 2018, 67(9): 090702. Zhang Z Z, Li H, Cao J C. Ultrafast terahertz detectors[J]. Acta Physica Sinica, 2018, 67(9): 090702. |
[27] | Luo H, Liu H C, Song C Y, et al. Background-limited terahertz quantum-well photodetector[J]. Applied Physics Letters, 2005, 86(23): 231103. doi: 10.1063/1.1947377 |
[28] | Jia J Y, Gao J H, Hao M R, et al. Dark current mechanism of terahertz quantum-well photodetectors[J]. Journal of Applied Physics, 2014, 116(15): 154501. doi: 10.1063/1.4898036 |
[29] | Jia J Y, Wang T M, Zhang Y H, et al. High-temperature photon-noise-limited performance terahertz quantum-well photodetectors[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(5): 715–724. doi: 10.1109/TTHZ.2015.2453632 |
[30] | Wang H X, Fu Z L, Shao D X, et al. Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well[J]. Applied Physics Letters, 2018, 113(17): 171107. doi: 10.1063/1.5046881 |
[31] | Cao J C, Chen Y L, Liu H C. Effect of optical phonons on the spectral shape of terahertz quantum-well photodetectors[J]. Superlattices and Microstructures, 2006, 40(2): 119–124. doi: 10.1016/j.spmi.2006.06.001 |
[32] | Xiong F, Guo X G, Cao J C. Simulation of photocurrents of terahertz quantum-well photodetectors[J]. Chinese Physics Letters, 2008, 25(5): 1895–1897. doi: 10.1088/0256-307X/25/5/102 |
[33] | Guo X G, Zhang R, Liu H C, et al. Photocurrent spectra of heavily doped terahertz quantum well photodetectors[J]. Applied Physics Letters, 2010, 97(2): 021114. doi: 10.1063/1.3458829 |
[34] | Gu L L, Zhang R, Tan Z Y, et al. Terahertz quantum well photo-detectors: grating versus 45° facet coupling[J]. Journal of Physics D: Applied Physics, 2014, 47(16): 165101. doi: 10.1088/0022-3727/47/16/165101 |
[35] | Gu L L, Guo X G, Fu Z L, et al. Optical-phonon-mediated photocurrent in terahertz quantum-well photodetectors[J]. Applied Physics Letters, 2015, 106(11): 111107. doi: 10.1063/1.4916084 |
[36] | Yu C H, Zhang B, Lu W, et al. Strong enhancement of terahertz response in GaAs/AlGaAs quantum well photodetector by magnetic field[J]. Applied Physics Letters, 2010, 97(2): 022102. doi: 10.1063/1.3462300 |
[37] | Yu C H, Zhang B, Luo X D, et al. Wide tunability and electron transfer in GaAs/AlGaAs quantum well photodetector by magnetic field[J]. Applied Physics Letters, 2017, 110(19): 192102. doi: 10.1063/1.4983218 |
[38] | Yu C H, Li L, Xu T F, et al. Strong terahertz response in quantum well photodetector based on intradonor transition by magnetic field[J]. AIP Advances, 2018, 8(12): 125014. doi: 10.1063/1.5051203 |
[39] | Zhang G X, Guo X G, Wang H X, et al. Bias-polarity-dependent photocurrent spectra of terahertz stepped-quantum-well photodetectors[J]. Physical Review Applied, 2019, 12(2): 024035. doi: 10.1103/PhysRevApplied.12.024035 |
[40] | Zhou T, Zhang R, Guo X G, et al. Terahertz imaging with quantum-well photodetectors[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1109–1111. doi: 10.1109/LPT.2012.2196033 |
[41] | Tan Z Y, Zhou T, Cao J C, et al. Terahertz imaging with quantum-cascade laser and quantum-well photodetector[J]. IEEE Photonics Technology Letters, 2013, 25(14): 1344–1346. doi: 10.1109/LPT.2013.2265303 |
[42] | Tan Z Y, Zhou T, Fu Z L, et al. Reflection imaging with terahertz quantum-cascade laser and quantum-well photodetector[J]. Electronics Letters, 2014, 50(5): 389–391. doi: 10.1049/el.2013.4079 |
[43] | Qiu F C, Tan Z Y, Wang C, et al. Terahertz optical scanning imaging of motionless polyurethane insulation materials[J]. Electronics Letters, 2019, 55(19): 1053–1055. doi: 10.1049/el.2019.2282 |
[44] | Zhou T, Tan Z Y, Gu L, et al. Three-dimensional imaging with terahertz quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2015, 51(1): 85–86. doi: 10.1049/el.2014.3873 |
[45] | Qiu F C, Tan Z Y, Fu Z L, et al. Reflective scanning imaging based on a fast terahertz photodetector[J]. Optics Communications, 2018, 427: 170–174. doi: 10.1016/j.optcom.2018.06.030 |
[46] | Qiu F C, Fu Y Z, Wang C, et al. Fast terahertz reflective confocal scanning imaging with a quantum cascade laser and a photodetector[J]. Applied Physics B, 2019, 125(5): 86. doi: 10.1007/s00340-019-7198-8 |
[47] | Fu Z L, Gu L L, Guo X G, et al. Frequency up-conversion photon-type terahertz imager[J]. Scientific Reports, 2016, 6: 25383. doi: 10.1038/srep25383 |
[48] | 符张龙, 邵棣祥, 张真真, 等.太赫兹频率上转换成像器件研究[J].深圳大学学报理工版, 2019, 36(2): 147–151. Fu Z L, Shao D X, Zhang Z Z, et al. Terahertz frequency up-conversion imaging devices[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 147–151. |
Overview: Terahertz (THz) waves have a good transmissivity on non-polar materials and no ionization effects on biomedical tissues. Therefore it is ideal for the applications such as non-destructive testing and biomedical imaging. The imaging system based on THz quantum well photodetectors (THz QWPs) has higher imaging resolution, faster imaging speed, higher signal-to-noise ratio (SNR), and more compact structure as the THz QWPs have fast response, high responsivity, low noise equivalent power, and tiny size. This paper reviews the research progress of the imaging system based on THz QWPs. The direct transmission and direct reflection imaging systems have simple light paths, and the 3D imaging system can obtain 3D information of objects. However, the imaging speed, the resolution and SNR are low. The archimedean spiral scanning imaging system progressed in imaging speed, but the resolution is still not high. The confocal scanning imaging system has a short imaging time and a relatively high imaging resolution, nevertheless, the SNR is low. The pixel-less imaging system has a diffraction-limited resolution, extremely short imaging time, and high SNR, is the most promising one above. There are some tips for system performance improvement. First, the imaging resolution can be optimized by the optical confocal methods. Second, the large imaging area can be achieved by optimized optical path design. Third, high imaging speed can be achieved with no mechanical stop scanning, multi-pixels detectors, or reducing signal acquisition time with an ultrafast detector. Forth, the SNR is mainly relying on the steady optical path, optical source power, and detector sensitivity. However, these factors are always competitive, a trade-off must be made to achieve an optimized imaging solution for a specific application. It improves the light output stability and beam quality with a more stable fixture for the source and the detector mounting. The improvement of the detector response speed, detection sensitivity, and array size are also working. It is believed that the THz imaging will become faster (real-time/ultra-fast), more accurate (higher resolution), and simpler (lower systems complexity) with these efforts. And it will play an important role in biomedical and industrial imaging in the future.
(a) Device schematic; (b) Band profile of an n-type GaAs/(Al, Ga)As 45° facet coupled THz QWP[10]
(a) Setup of the THz raster scanning transmission imaging system (with a blackbody as the source); (b) Comparison of visible image (top) and THz images for the hidden metal key with different SNR: 27, 17, and 10 (from top to bottom)[40]
(a) Setup of the THz raster scanning transmission imaging system (with a THz QCL as the source); (b), (c) Visible (b) and THz images (c) of the watermark region of a paper money[41]
(a) Setup of the THz raster scanning reflection imaging system (with sample moving); (b), (c) Visible (b) and THz images (c) of the surface of flash disk[42]
(a) Setup of the THz raster scanning reflection imaging system (with mirrors moving); (b), (c) Visible (b) and THz images (c) of a commemorative badge of the 40th anniversary of the University of Chinese Academy of Sciences; (d), (e) Visible (d) and THz images (e) of three drops of water covered with the polyurethane (PU) insulation materials[43]
(a) Setup of the THz 3D imaging system; (b), (c) Visible (b) and THz images (c) of a off-axis parabolic mirror[44]
(a) Setup of the THz archimedes spiral scanning imaging system; (b), (c) Visible (b) and THz images (c) of a leaf half covered with a plastic bag; (d), (e) Visible (d) and THz images (e) of a leaf covered with a polyethylene lid[45]
(a) Setup of the THz confocal scanning imaging system; (b), (c) Visible image (b) of a plastic brush and THz image (c) of it fixed by the tape; (d), (e) Visible (d) and THz images (e) of a razor blade; (f), (g) Visible (f) and THz images (g) of a metal plate; (h), (i) Visible (h) and THz images (i) of a coin[46]
(a) Setup for THz pixelless imaging system; (b) The focal laser spots of the THz QCL imaged by the THz QWP-LED[47]