Shi C J, Wu X, Peng Y. Applications of terahertz imaging technology in tumor detection[J]. Opto-Electron Eng, 2020, 47(5): 190638. doi: 10.12086/oee.2020.190638
Citation: Shi C J, Wu X, Peng Y. Applications of terahertz imaging technology in tumor detection[J]. Opto-Electron Eng, 2020, 47(5): 190638. doi: 10.12086/oee.2020.190638

Applications of terahertz imaging technology in tumor detection

    Fund Project: Supported by National Key R & D Plan "Development of Major Scientific Instruments and Equipment" (2017YFF0106300), National Natural Science Foundation--Outstanding Youth Foundation (61922059), Youth Top Talent Development Plan, and Shanghai Rising-Star Program (17QA1402500)
More Information
  • Terahertz radiation is an electromagnetic wave whose frequency is in the range of 0.1 THz~10 THz. With its many features such as non-ionizing and resonance to many biomolecules, THz wave has great potential applications in biomedical field, especially in tumor detection. Terahertz imaging technology, as a new imaging technology in biomedical field, is studied by many research groups around the world. In this paper, we listed and analyzed many terahertz imaging methods in tumor detection, including terahertz scanning imaging, terahertz tomography, terahertz holography, and terahertz near-field imaging. We introduced the basic principle of these imaging methods and the works done by different groups worldwide. At last, we presented the prospect of terahertz imaging technology applied in biomedical field.
  • 加载中
  • [1] 张兴宁, 陈稷, 周泽魁.太赫兹时域光谱技术[J].激光与光电子学进展, 2005, 42(7): 35-38.

    Google Scholar

    Zhang X N, Chen J, Zhou Z K. THz time-domain spectroscopy technology[J]. Laser & Optoelectronics Progress, 2005, 42(7): 35-38.

    Google Scholar

    [2] Zhou L, Chen L G, Ren G H, et al. Monitoring cis-to-trans isomerization of azobenzene using terahertz time-domain spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(42): 27205-27213. doi: 10.1039/C8CP04570D

    CrossRef Google Scholar

    [3] Li T, Ma H Y, Peng Y, et al. Gaussian numerical analysis and terahertz spectroscopic measurement of homocysteine[J]. Biomedical Optics Express, 2018, 9(11): 5467-5476. doi: 10.1364/BOE.9.005467

    CrossRef Google Scholar

    [4] Shen Y C, Upadhya P C, Linfield E H, et al. Temperature-dependent low-frequency vibrational spectra of purine and adenine[J]. Applied Physics Letters, 2003, 82(14): 2350-2352. doi: 10.1063/1.1565680

    CrossRef Google Scholar

    [5] Peng Y, Shi C J, Xu M Q, et al. Qualitative and quantitative identification of components in mixture by terahertz spectroscopy[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(6): 696-701. doi: 10.1109/TTHZ.2018.2867816

    CrossRef Google Scholar

    [6] Pickwell E, Wallace V P. Biomedical applications of terahertz technology[J]. Journal of Physics D: Applied Physics, 2006, 39(17): R301-R310. doi: 10.1088/0022-3727/39/17/R01

    CrossRef Google Scholar

    [7] Kawase K, Ogawa Y, Watanabe Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints[J]. Optics Express, 2003, 11(20): 2549-2554. doi: 10.1364/OE.11.002549

    CrossRef Google Scholar

    [8] Danciu M, Alexa-Stratulat T, Stefanescu C, et al. Terahertz spectroscopy and imaging: a cutting-edge method for diagnosing digestive cancers[J]. Materials, 2019, 12(9): 1519. doi: 10.3390/ma12091519

    CrossRef Google Scholar

    [9] Kasban H, El-Bendary M A M, Salama D H. A comparative study of medical imaging techniques[J]. International Journal of Information Science and Intelligent System, 2015, 4(2): 37-58.

    Google Scholar

    [10] 张蕾, 徐新龙, 李福利.太赫兹(THz)成像的进展概况[J].量子电子学报, 2005, 22(2): 129-134. doi: 10.3969/j.issn.1007-5461.2005.02.001

    CrossRef Google Scholar

    Zhang L, Xu X L, Li F L. Review of the progress of T-ray imaging[J]. Chinese Journal of Quantum Electronics, 2005, 22(2): 129-134. doi: 10.3969/j.issn.1007-5461.2005.02.001

    CrossRef Google Scholar

    [11] 杨昆, 赵国忠, 梁承森, 等.脉冲太赫兹波成像与连续波太赫兹成像特性的比较[J].中国激光, 2009, 36(11): 2853-2858.

    Google Scholar

    Yang K, Zhao G Z, Liang C S, et al. Comparison between pulsed terahertz imaging and continuous-wave terahertz imaging[J]. Chinese Journal of Lasers, 2009, 36(11): 2853-2858.

    Google Scholar

    [12] 潘中良, 陈翎, 谌贻会.太赫兹波的层析成像[J].数字技术与应用, 2013(12): 29-30.

    Google Scholar

    Pan Z L, Chen L, Shen Y H. Terahertz tomography[J]. Digital Technology & Application, 2013(12): 29-30.

    Google Scholar

    [13] 石敬, 王新柯, 郑显华, 等.太赫兹数字全息术的研究进展[J].中国光学, 2017, 10(1): 131-147.

    Google Scholar

    Shi J, Wang X K, Zheng X H, et al. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1): 131-147.

    Google Scholar

    [14] 刘宏翔, 姚建铨, 王与烨, 等.太赫兹波近场成像综述[J].红外与毫米波学报, 2016, 35(3): 300-309, 376.

    Google Scholar

    Liu H X, Yao J Q, Wang Y Y, et al. Review of THz near-field imaging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 300-309, 376.

    Google Scholar

    [15] 孙卫东, 耿国帅, 杨忠波, 等.猪肉组织的近场太赫兹成像检测研究[J].红外与毫米波学报, 2018, 37(6): 769-774.

    Google Scholar

    Sun W D, Geng G S, Yang Z B, et al. Imaging porcine tissue using a near-field terahertz microscopy technique[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 769-774.

    Google Scholar

    [16] Cole B E, Woodward R M, Crawley D A, et al. Terahertz imaging and spectroscopy of human skin in vivo[J]. Proceedings of SPIE, 2001, 4276: 1-10. doi: 10.1117/12.428010

    CrossRef Google Scholar

    [17] Woodward R M, Cole B E, Wallace V P, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J]. Physics in Medicine and Biology, 2002, 47(21): 3853-3863. doi: 10.1088/0031-9155/47/21/325

    CrossRef Google Scholar

    [18] Woodward R M, Wallace V P, Pye R J, et al. Terahertz pulse imaging of ex vivo basal cell carcinoma[J]. Journal of Investigative Dermatology, 2003, 120(1): 72-78. doi: 10.1046/j.1523-1747.2003.12013.x

    CrossRef Google Scholar

    [19] Woodward R M, Wallace V P, Arnone D D, et al. Terahertz pulsed imaging of skin cancer in the time and frequency domain[J]. Journal of Biological Physics, 2003, 29(2-3): 257-259.

    Google Scholar

    [20] Wallace V P, Fitzgerald A J, Shankar S, et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo[J]. British Journal of Dermatology, 2004, 151(2): 424-432. doi: 10.1111/j.1365-2133.2004.06129.x

    CrossRef Google Scholar

    [21] Fitzgerald A J, Wallace V P, Jimenez-Linan M, et al. Terahertz pulsed imaging of human breast tumors[J]. Radiology, 2006, 239(2): 533-540. doi: 10.1148/radiol.2392041315

    CrossRef Google Scholar

    [22] Huang S Y, Wang Y X J, Yeung D K W, et al. Tissue characterization using terahertz pulsed imaging in reflection geometry[J]. Physics in Medicine and Biology, 2008, 54(1): 149-160.

    Google Scholar

    [23] Kan W C, Lee W S, Cheung W H, et al. Terahertz pulsed imaging of knee cartilage[J]. Biomedical Optics Express, 2010, 1(3): 967-974. doi: 10.1364/BOE.1.000967

    CrossRef Google Scholar

    [24] Fitzgerald A J, Wallace V P, Pinder S E, et al. Classification of terahertz-pulsed imaging data from excised breast tissue[J]. Journal of Biomedical Optics, 2012, 17(1): 016005. doi: 10.1117/1.JBO.17.1.016005

    CrossRef Google Scholar

    [25] Oh S J, Kim S H, Jeong K, et al. Measurement depth enhancement in terahertz imaging of biological tissues[J]. Optics Express, 2013, 21(18): 21299-21305. doi: 10.1364/OE.21.021299

    CrossRef Google Scholar

    [26] Oh S J, Kim S H, Ji Y B, et al. Study of freshly excised brain tissues using terahertz imaging[J]. Biomedical Optics Express, 2014, 5(8): 2837-2842. doi: 10.1364/BOE.5.002837

    CrossRef Google Scholar

    [27] Ho L, Müller R, Römer M, et al. Analysis of sustained-release tablet film coats using terahertz pulsed imaging[J]. Journal of Controlled Release, 2007, 119(3): 253-261. doi: 10.1016/j.jconrel.2007.03.011

    CrossRef Google Scholar

    [28] Enatsu T, Kitahara H, Takano K, et al. Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples[C]//Proceedings of the Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, UK, 2007: 557-558.https://ieeexplore.ieee.org/document/4516627?denied=

    Google Scholar

    [29] Shen Y C, Taday P F. Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 407-415. doi: 10.1109/JSTQE.2007.911309

    CrossRef Google Scholar

    [30] Taylor Z D, Singh R S, Culjat M O, et al. Reflective terahertz imaging of porcine skin burns[J]. Optics Letters, 2008, 33(11): 1258-1260. doi: 10.1364/OL.33.001258

    CrossRef Google Scholar

    [31] Hoshina H, Hayashi A, Miyoshi N, et al. Terahertz pulsed imaging of frozen biological tissues[J]. Applied Physics Letters, 2009, 94(12): 123901. doi: 10.1063/1.3106616

    CrossRef Google Scholar

    [32] Brun M A, Formanek F, Yasuda A, et al. Terahertz imaging applied to cancer diagnosis[J]. Physics in Medicine and Biology, 2010, 55(16): 4615-4623. doi: 10.1088/0031-9155/55/16/001

    CrossRef Google Scholar

    [33] May R K, Su K, Han L H, et al. Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging[J]. Journal of Pharmaceutical Sciences, 2013, 102(7): 2179-2186. doi: 10.1002/jps.23560

    CrossRef Google Scholar

    [34] Sim Y C, Park J Y, Ahn K M, et al. Terahertz imaging of excised oral cancer at frozen temperature[J]. Biomedical Optics Express, 2013, 4(8): 1413-1421. doi: 10.1364/BOE.4.001413

    CrossRef Google Scholar

    [35] Bowman T C, El-Shenawee M, Campbell L K. Terahertz imaging of excised breast tumor tissue on paraffin sections[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2088-2097. doi: 10.1109/TAP.2015.2406893

    CrossRef Google Scholar

    [36] Yamaguchi S, Fukushi Y, Kubota O, et al. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy[J]. Scientific Reports, 2016, 6(1): 30124. doi: 10.1038/srep30124

    CrossRef Google Scholar

    [37] 蒋玉英, 葛宏义, 张元.基于太赫兹成像技术的小麦麦芽糖定量检测研究[J].光谱学与光谱分析, 2018, 38(10): 3017-3022.

    Google Scholar

    Jiang Y Y, Ge H Y, Zhang Y. Quantitative determination of maltose concentration in wheat by using terahertz imaging[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3017-3022.

    Google Scholar

    [38] Wahaia F, Valusis G, Bernardo L M, et al. Detection of colon cancer by terahertz techniques[J]. Journal of Molecular Structure, 2011, 1006(1-3): 77-82. doi: 10.1016/j.molstruc.2011.05.049

    CrossRef Google Scholar

    [39] Joseph C S, Yaroslavsky A N, Neel V A, et al. Continuous wave terahertz transmission imaging of nonmelanoma skin cancers[J]. Lasers in Surgery and Medicine, 2011, 43(6): 457-462. doi: 10.1002/lsm.21078

    CrossRef Google Scholar

    [40] Lee Y K, Choi S W, Han S T, et al. Detection of foreign bodies in foods using continuous wave terahertz imaging[J]. Journal of Food Protection, 2012, 75(1): 179-183. doi: 10.4315/0362-028X.JFP-11-181

    CrossRef Google Scholar

    [41] Joseph C S, Patel R, Neel V A, et al. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging[J]. Journal of Biophotonics, 2014, 7(5): 295-303. doi: 10.1002/jbio.201200111

    CrossRef Google Scholar

    [42] Doradla P, Alavi K, Joseph C S, et al. Detection of colon cancer by continuous-wave terahertz polarization imaging technique[J]. Journal of Biomedical Optics, 2013, 18(9): 090504. doi: 10.1117/1.JBO.18.9.090504

    CrossRef Google Scholar

    [43] Martin J P, Joseph C S, Giles R H. Continuous-wave circular polarization terahertz imaging[J]. Journal of Biomedical Optics, 2016, 21(7): 070502. doi: 10.1117/1.JBO.21.7.070502

    CrossRef Google Scholar

    [44] Yang X, Shi J, Wang Y Y, et al. Label‐free bacterial colony detection and viability assessment by continuous‐wave terahertz transmission imaging[J]. Journal of Biophotonics, 2018, 11(8): e201700386. doi: 10.1002/jbio.201700386

    CrossRef Google Scholar

    [45] Wu L M, Xu D G, Wang Y Y, et al. Study of in vivo brain glioma in a mouse model using continuous-wave terahertz reflection imaging[J]. Biomedical Optics Express, 2019, 10(8): 3953-3962. doi: 10.1364/BOE.10.003953

    CrossRef Google Scholar

    [46] Bessou M, Chassagne B, Caumes J P, et al. Three-dimensional terahertz computed tomography of human bones[J]. Applied Optics, 2012, 51(28): 6738-6744. doi: 10.1364/AO.51.006738

    CrossRef Google Scholar

    [47] Li B, Wang D Y, Rong L, et al. Application of continuous-wave terahertz computed tomography for the analysis of chicken bone structure[J]. Optical Engineering, 2018, 57(2): 023105.

    Google Scholar

    [48] Rong L, Latychevskaia T, Zhou X, et al. Dynamic dehydration observation based on terahertz in-line digital holography[C]//Digital Holography & 3-D Imaging, Shanghai, China, 2015: DTh1A.2.https://www.osapublishing.org/abstract.cfm?uri=DH-2015-DTh1A.2

    Google Scholar

    [49] Rong L, Latychevskaia T, Chen C H, et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue[J]. Scientific Reports, 2015, 5(1): 8445. doi: 10.1038/srep08445

    CrossRef Google Scholar

    [50] Guo L H, Wang X K, Zhang Y. Terahertz digital holographic imaging of biological tissues[C]//Proceedings of the 8th International Symposium on Ultrafast Phenomena and Terahertz Waves, Chongqing, China, 2016: IW4B.3.http://www.en.cnki.com.cn/Article_en/CJFDTotal-GXJM201703009.htm

    Google Scholar

    [51] Guo L H, Wang X K, Han P, et al. Observation of dehydration dynamics in biological tissues with terahertz digital holography[J]. Applied Optics, 2017, 56(13): F173-F178. doi: 10.1364/AO.56.00F173

    CrossRef Google Scholar

    [52] Schade U, Holldack K, Martin M C, et al. THz near-field imaging of biological tissues employing synchrotron radiation[J]. Proceedings of SPIE, 2005, 5725: 46-52. doi: 10.1117/12.590731

    CrossRef Google Scholar

    [53] Chen H, Ma S H, Yang W X, et al. The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging[J]. Chinese Physics Letters, 2013, 30(3): 030702. doi: 10.1088/0256-307X/30/3/030702

    CrossRef Google Scholar

    [54] Chen H, Ma S H, Wu X, et al. Diagnose human colonic tissues by terahertz near-field imaging[J]. Journal of Biomedical Optics, 2015, 20(3): 036017. doi: 10.1117/1.JBO.20.3.036017

    CrossRef Google Scholar

    [55] Tseng T F, Yang S C, Shih Y T, et al. Near-field sub-THz transmission-type image system for vessel imaging in-vivo[J]. Optics Express, 2015, 23(19): 25058-25071. doi: 10.1364/OE.23.025058

    CrossRef Google Scholar

    [56] Fawole O C, Tabib-Azar M. Terahertz near-field imaging of biological samples with horn antenna-excited probes[J]. IEEE Sensors Journal, 2016, 16(24): 8752-8760. doi: 10.1109/JSEN.2016.2582387

    CrossRef Google Scholar

    [57] Peng Y, Yuan X R, Zou X, et al. Terahertz identification and quantification of neurotransmitter and neurotrophy mixture[J]. Biomedical Optics Express, 2016, 7(11): 4472-4479. doi: 10.1364/BOE.7.004472

    CrossRef Google Scholar

    [58] Chen W Q, Peng Y, Jiang X K, et al. Isomers identification of 2-hydroxyglutarate acid disodium salt (2HG) by terahertz time-domain spectroscopy[J]. Scientific Reports, 2017, 7(1): 12166. doi: 10.1038/s41598-017-11527-z

    CrossRef Google Scholar

  • Overview: Terahertz (THz) wave exhibits many features including non-ionizing, non-invasive, phase-sensitive to polar substances, spectral fingerprinting, relatively good resolution, coherent detection properties, and penetration capabilities. For tumor detection, traditional imaging methods such as magnetic resonance imaging and computerized tomography will cause radiation damage to biotissue, while THz imaging can provide quick, non-destructive, and accurate imaging of biotissue. Two kinds of terahertz sources are mainly used: pulse THz wave source and continuous THz wave source. Pulse THz wave source provides multi-dimensional information for the analysis of sample, while continuous THz wave source can only provide amplitude or phase images for delineation different areas. But imaging system using continuous THz source are more concise compared to that using pulse THz source. Currently, based on these two THz sources, there are four kinds of imaging technologies:

    1) THz far-field scanning imaging is the most commonly used, where THz signal is collected by scanning the sample point by point and then images are constructed by these data. The resolution depends on the spot diameter and step size of the scanning, therefore, long measuring time are required for high-resolution imaging.

    2) THz tomography combined THz far-field imaging system with tomography algorithm. By collecting the THz signal from different angle of sample, and then using the algorithm for analysis, 3D images of sample can be obtained. Internal structure of the sample can be observed by THz tomography. However, it will take much more time to measure the signal from different angle.

    3) For THz holography, different array detectors, such as charge coupled device, pyroelectric detector, and microbolometer, are used in THz far-field imaging system. Instead of point-by-point measurement of common far-field THz imaging system, THz digital holography collects the THz signal of the whole sample at once, which greatly reduce the measurement time.

    4) THz near-field imaging method collects the signal of evanescent field near the sample surface and uses these data to calculate images. So, THz near-field imaging can break the diffraction limit (λ/2) and provides the resolution three magnitudes higher than THz far-field imaging.

    In the paper, we introduced the studies of these four THz imaging technologies done by different groups worldwide. At last, we presented the prospect of terahertz imaging technology applied in biomedical field.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint