Ouyang X, Xie Z J, Zhang M R, et al. Laser-induced periodic surface structure for microscale anti-counterfeiting structural colors[J]. Opto-Electron Eng, 2022, 49(1): 210320. doi: 10.12086/oee.2022.210320
Citation: Ouyang X, Xie Z J, Zhang M R, et al. Laser-induced periodic surface structure for microscale anti-counterfeiting structural colors[J]. Opto-Electron Eng, 2022, 49(1): 210320. doi: 10.12086/oee.2022.210320

Laser-induced periodic surface structure for microscale anti-counterfeiting structural colors

    Fund Project: Guangdong Provincial Innovation and Entrepreneurship Project (2016ZT06D081)
More Information
  • The vivid color appearance of laser-induced periodic surface structures (LIPSS) has received intense research interests. The vibrant structural color associated with the periodicity of LIPSS is normally concerned under bright -field illumination, while the colors of structures under dark-field illumination are commonly overlooked. In this paper, we report an image encryption method based on laser-induced dual-period grating structures in indium tin oxide thin films, exhibiting different colors under bright-field and dark-field illumination. Following the standard laser recipe by judiciously controlling the polarization, pulse energy and scanning speed, subwavelength period LIPSS can be fabricated. By controlling the space between the fabricated lines, another grating with a larger periodicity can be formed. Consequently, the dual-period grating structure displays different colors under bright-field and dark-field illumination depending on the laser recipe with different pulse energies and line spaces. Leveraging this effect, information can be encoded in the color image, which displays the same color appearance under bright -field illumination while revealing different colors under dark-field illumination has been demonstrated. Combing the flexibility and scalability of laser fabrication, we envisage the potential applications in anti-counterfeiting, pattern decoration, metasurface, etc.
  • 加载中
  • [1] 欧阳旭, 徐毅, 冼铭聪, 等. 基于无序金纳米棒编码的多维光信息存储[J]. 光电工程, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

    CrossRef Google Scholar

    Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electron Eng, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

    CrossRef Google Scholar

    [2] Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 2019, 11(5): 2447−2452. doi: 10.1039/C8NR09192G

    CrossRef Google Scholar

    [3] Ouyang X, Xu Y, Xian M C, et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nat Photonics, 2021, 15(12): 901−907. doi: 10.1038/s41566-021-00880-1

    CrossRef Google Scholar

    [4] 黎显继, 白忠臣, 彭嫚, 等. 激光诱导光栅表面等离子体增强CdSe量子点荧光[J]. 光电工程, 2019, 46(5): 180464. doi: 10.12086/oee.2019.180464

    CrossRef Google Scholar

    Li X J, Bai Z C, Peng M, et al. Surface plasma enhanced fluorescence of CdSe quantum dots induced by laser on a grating surface[J]. Opto-Electron Eng, 2019, 46(5): 180464. doi: 10.12086/oee.2019.180464

    CrossRef Google Scholar

    [5] 杨焕, 曹宇, 李峰平, 等. 激光制备超疏水表面研究进展[J]. 光电工程, 2017, 44(12): 1160−1168. doi: 10.3969/j.issn.1003-501X.2017.12.003

    CrossRef Google Scholar

    Yang H, Cao Y, Li F P, et al. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electron Eng, 2017, 44(12): 1160−1168. doi: 10.3969/j.issn.1003-501X.2017.12.003

    CrossRef Google Scholar

    [6] Van Driel H M, Sipe J E, Young J F. Laser-induced periodic surface structure on solids: a universal phenomenon[J]. Phys Rev Lett, 1982, 49(26): 1955−1958. doi: 10.1103/PhysRevLett.49.1955

    CrossRef Google Scholar

    [7] Bonse J, Gräf S. Maxwell meets Marangoni—a review of theories on laser-induced periodic surface structures[J]. Laser Photonics Rev, 2020, 14(10): 2000215. doi: 10.1002/lpor.202000215

    CrossRef Google Scholar

    [8] Bonse J, Höhm S, Kirner S V, et al. Laser-induced periodic surface structures—A scientific evergreen[J]. IEEE J Sel Top Quantum Electron, 2017, 23(3): 9000615. doi: 10.1109/JSTQE.2016.2614183

    CrossRef Google Scholar

    [9] Birnbaum M. Semiconductor surface damage produced by ruby lasers[J]. J Appl Phys, 1965, 36(11): 3688−3689. doi: 10.1063/1.1703071

    CrossRef Google Scholar

    [10] Vorobyev A Y, Makin V S, Guo C L. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals[J]. J Appl Phys, 2007, 101(3): 034903. doi: 10.1063/1.2432288

    CrossRef Google Scholar

    [11] Tsukamoto M, Asuka K, Nakano K, et al. Periodic microstructures produced by femtosecond laser irradiation on titanium plate[J]. Vacuum, 2006, 80(11‒12): 1346−1350. doi: 10.1016/j.vacuum.2006.01.016

    CrossRef Google Scholar

    [12] Ashkenasi D, Rosenfeld A, Varel H, et al. Laser processing of sapphire with picosecond and sub-picosecond pulses[J]. Appl Surf Sci, 1997, 120(1‒2): 65−80. doi: 10.1016/S0169-4332(97)00218-3

    CrossRef Google Scholar

    [13] Rohloff M, Das S K, Höhm S, et al. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences[J]. J Appl Phys, 2011, 110(1): 014910. doi: 10.1063/1.3605513

    CrossRef Google Scholar

    [14] Bonse J, Kirner S V, Griepentrog M, et al. Femtosecond laser texturing of surfaces for tribological applications[J]. Materials, 2018, 11(5): 801. doi: 10.3390/ma11050801

    CrossRef Google Scholar

    [15] Nivas J J J, He S T, Rubano A, et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate[J]. Sci Rep, 2015, 5: 17929. doi: 10.1038/srep17929

    CrossRef Google Scholar

    [16] Liang F, Vallée R, Chin S L. Pulse fluence dependent nanograting inscription on the surface of fused silica[J]. Appl Phys Lett, 2012, 100(25): 251105. doi: 10.1063/1.4729620

    CrossRef Google Scholar

    [17] Forster M, Kautek W, Faure N, et al. Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses[J]. Phys Chem Chem Phys, 2011, 13(9): 4155−4158. doi: 10.1039/c0cp01798a

    CrossRef Google Scholar

    [18] Lin Z Y, Hong M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultraf Sci, 2021, 2021: 9783514. doi: 10.34133/2021/9783514

    CrossRef Google Scholar

    [19] Reif J, Varlamova O, Uhlig S, et al. On the physics of self-organized nanostructure formation upon femtosecond laser ablation[J]. Appl Phys A, 2014, 117(1): 179−184. doi: 10.1007/s00339-014-8339-x

    CrossRef Google Scholar

    [20] Garrelie F, Colombier J P, Pigeon F, et al. Evidence of surface Plasmon resonance in ultrafast laser-induced ripples[J]. Opt Express, 2011, 19(10): 9035−9043. doi: 10.1364/OE.19.009035

    CrossRef Google Scholar

    [21] Le Harzic R, Dörr D, Sauer D, et al. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation[J]. Appl Phys Lett, 2011, 98(21): 211905. doi: 10.1063/1.3593493

    CrossRef Google Scholar

    [22] Dong Y Y, Molian P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser[J]. Appl Phys Lett, 2004, 84(1): 10−12. doi: 10.1063/1.1637948

    CrossRef Google Scholar

    [23] Bhardwaj V R, Simova E, Rajeev P P, et al. Optically produced arrays of planar nanostructures inside fused silica[J]. Phys Rev Lett, 2006, 96(5): 057404. doi: 10.1103/PhysRevLett.96.057404

    CrossRef Google Scholar

    [24] Zhao Y Z, Su Y L, Hou X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electron Adv, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008

    CrossRef Google Scholar

    [25] Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Opt Express, 2010, 18(3): 2913−2924. doi: 10.1364/OE.18.002913

    CrossRef Google Scholar

    [26] 李昊, 胡德骄, 秦飞, 等. 原子层厚度超表面光场调控原理及应用[J]. 中国光学, 2021, 14(4): 851−866. doi: 10.37188/CO.2021-0069

    CrossRef Google Scholar

    Li H, Hu D J, Qin F, et al. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chin Opt, 2021, 14(4): 851−866. doi: 10.37188/CO.2021-0069

    CrossRef Google Scholar

    [27] Lu Y D, Hu D J, Zhang M S, et al. Laser printing based on curvature-driven shape transition of aluminum nanodiscs[J]. Chin Opt Lett, 2021, 19(5): 053602. doi: 10.3788/COL202119.053602

    CrossRef Google Scholar

    [28] Li G Q, Li J W, Hu Y L, et al. Femtosecond laser color marking stainless steel surface with different wavelengths[J]. Appl Phys A, 2015, 118(4): 1189−1196. doi: 10.1007/s00339-014-8868-3

    CrossRef Google Scholar

    [29] Hu D J, Lu Y D, Cao Y Y, et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy[J]. ACS Nano, 2018, 12(9): 9233−9239. doi: 10.1021/acsnano.8b03964

    CrossRef Google Scholar

    [30] Wang W, Rosenmann D, Czaplewski D A, et al. Realizing structural color generation with aluminum plasmonic V-groove metasurfaces[J]. Opt Express, 2017, 25(17): 20454−20465. doi: 10.1364/OE.25.020454

    CrossRef Google Scholar

    [31] Zeng B B, Gao Y K, Bartoli F J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J]. Sci Rep, 2013, 3: 2840. doi: 10.1038/srep02840

    CrossRef Google Scholar

  • The vivid color appearance of laser-induced periodic surface structures (LIPSS) has received intense research interests. The vibrant structural color associated with the periodicity of LIPSS is normally concerned under bright-field illumination, while the colors of the structures under dark-field illumination are commonly overlooked. In this paper, we report an image encryption method based on laser-induced dual-period grating structures in indium tin oxide (thickness 180 nm) thin films, exhibiting different colors under bright-field and dark-field illumination. Following the standard laser recipe by judiciously controlling the polarization, pulse energy and scanning speed, subwavelength period LIPSS can be fabricated. By controlling the space between the fabricated lines, another grating with a larger periodicity can be formed. Leveraging this effect, we studied the effect of laser processing energy and the distance (D) between fabricated lines on the color appearance of the structures under bright-field and dark-field illumination. The experimental results indicate that the structures formed by different laser processing energies have rich colors under the bright-field and dark-field when the scanning speed is 0.5 mm/s and the distance D between scanning lines is 1.5 μm. When the laser energy and laser scanning speed are constant, using different distances D between laser fabricated lines can make the structures display the same color under bright-field illumination while different colors under dark-field illumination. This feature can be used for image hiding such as the QR code. The colors displayed under bright-field illumination is the same, and the QR code cannot be recognized. In contrast, the QR code shows distinct colors under dark-field illumination. Furthermore, it is possible to introduce disturbance information under bright-field illumination image to realize data encryption. Only concealed information can be clearly distinguished under dark-field illumination. Combing the flexibility and scalability of laser fabrication, we envisage the potential applications in anti-counterfeiting, pattern decoration, metasurface, etc.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint