Zheng S J, Lin X, Huang Z Y, et al. Light field regulation based on polarization holography[J]. Opto-Electron Eng, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114
Citation: Zheng S J, Lin X, Huang Z Y, et al. Light field regulation based on polarization holography[J]. Opto-Electron Eng, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114

Light field regulation based on polarization holography

    Fund Project: National Key Research and Development Program of China (2018YFA0701800) and Fujian Province Major Science and Technology (2020HZ01012)
More Information
  • Polarization holography has important application prospects in the field of data storage and polarized light imaging due to its ability to record amplitude, phase and polarization information. In addition, it also has the ability to regulate light fields, which can regulate special light fields with helical phase distribution and spatial polarization distribution. Such special light fields have broad application prospects in the fields of optical communication, particle manipulation, photon entanglement, etc. There is also a lot of research focused on how to generate such beams. The latest research progress in preparing vector beams, scalar vortex beams, and vector vortex beams by using polarization holography is introduced in this paper. The light field regulation method based on polarization holography has the advantages of a simple fabrication process, the small size of the optical system and low production cost, which provides a new idea for the manufacture of special light fields.
  • 加载中
  • [1] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photonics, 2009, 1(1): 1−57. doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [2] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Appl Phys A, 2007, 86(3): 329−334. doi: 10.1007/s00339-006-3784-9

    CrossRef Google Scholar

    [3] Lou K, Qian S X, Wang X L, et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon[J]. Opt Express, 2012, 20(1): 120−127. doi: 10.1364/OE.20.000120

    CrossRef Google Scholar

    [4] Varin C, Piché M. Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams[J]. Appl Phys B, 2002, 74(S1): s83−s88. doi: 10.1007/s00340-002-0906-8

    CrossRef Google Scholar

    [5] Novotny L, Beversluis M R, Youngworth K S, et al. Longitudinal field modes probed by single molecules[J]. Phys Rev Lett, 2001, 86(23): 5251−5254. doi: 10.1103/PhysRevLett.86.5251

    CrossRef Google Scholar

    [6] Ciattoni A, Crosignani B, Di Porto P, et al. Azimuthally polarized spatial dark solitons: exact solutions of Maxwell's equations in a Kerr medium[J]. Phys Rev Lett, 2005, 94(7): 073902. doi: 10.1103/PhysRevLett.94.073902

    CrossRef Google Scholar

    [7] Kawauchi H, Yonezawa K, Kozawa Y, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam[J]. Opt Lett, 2007, 32(13): 1839−1841. doi: 10.1364/OL.32.001839

    CrossRef Google Scholar

    [8] Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Opt Express, 2004, 12(15): 3377−3382. doi: 10.1364/OPEX.12.003377

    CrossRef Google Scholar

    [9] Gabriel C, Aiello A, Zhong W, et al. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes[J]. Phys Rev Lett, 2011, 106(6): 060502. doi: 10.1103/PhysRevLett.106.060502

    CrossRef Google Scholar

    [10] Cardano F, Karimi E, Slussarenko S, et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges[J]. Appl Opt, 2012, 51(10): C1−C6. doi: 10.1364/AO.51.0000C1

    CrossRef Google Scholar

    [11] Rumala Y S, Milione G, Nguyen T A, et al. Tunable supercontinuum light vector vortex beam generator using a q-plate[J]. Opt Lett, 2013, 38(23): 5083−5086. doi: 10.1364/OL.38.005083

    CrossRef Google Scholar

    [12] Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Opt Lett, 2007, 32(24): 3549−3551. doi: 10.1364/OL.32.003549

    CrossRef Google Scholar

    [13] Machavariani G, Lumer Y, Moshe I, et al. Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams[J]. Opt Commun, 2008, 281(4): 732−738. doi: 10.1016/j.optcom.2007.10.088

    CrossRef Google Scholar

    [14] 谭巧, 徐启峰, 谢楠. 亚波长径向偏振光栅的设计[J]. 光电工程, 2017, 44(3): 345−350. doi: 10.3969/j.issn.1003-501X.2017.03.010

    CrossRef Google Scholar

    Tan Q, Xu Q F, Xie N. Design of sub-wavelength radially polarized grating[J]. Opto-Electron Eng, 2017, 44(3): 345−350. doi: 10.3969/j.issn.1003-501X.2017.03.010

    CrossRef Google Scholar

    [15] Phua P B, Lai W J. Simple coherent polarization manipulation scheme for generating high power radially polarized beam[J]. Opt Express, 2007, 15(21): 14251−14256. doi: 10.1364/OE.15.014251

    CrossRef Google Scholar

    [16] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185−8189. doi: 10.1103/physreva.45.8185

    CrossRef Google Scholar

    [17] Nye J F, Berry M V. Dislocations in wave trains[J]. Proc Roy Soc A Math Phys Eng Sci, 1974, 336(1605): 165−190. doi: 10.1098/rspa.1974.0012

    CrossRef Google Scholar

    [18] Coullet P, Gil L, Rocca F, et al. Optical vortices[J]. Opt Commun, 1989, 73(5): 403−408. doi: 10.1016/0030-4018(89)90180-6

    CrossRef Google Scholar

    [19] Zhao Y F, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Opt Lett, 2015, 40(21): 4843−4846. doi: 10.1364/OL.40.004843

    CrossRef Google Scholar

    [20] Milione G, Nguyen T A, Leach J, et al. Using the nonseparability of vector beams to encode information for optical communication[J]. Opt Lett, 2015, 40(21): 4887−4890. doi: 10.1364/OL.40.004887

    CrossRef Google Scholar

    [21] 郭忠义, 龚超凡, 刘洪郡, 等. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593

    CrossRef Google Scholar

    Guo Z Y, Gong C F, Liu H J, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electron Eng, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593

    CrossRef Google Scholar

    [22] Beijersbergen M W, Allen L, van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Opt Commun, 1993, 96(1–3): 123−132. doi: 10.1016/0030-4018(93)90535-D

    CrossRef Google Scholar

    [23] Guo Z Y, Qu S L, Liu S T. Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses[J]. Opt Commun, 2007, 273(1): 286−289. doi: 10.1016/j.optcom.2006.12.023

    CrossRef Google Scholar

    [24] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Opt Lett, 1992, 17(3): 221−223. doi: 10.1364/OL.17.000221

    CrossRef Google Scholar

    [25] Carpentier A V, Michinel H, Salgueiro J R, et al. Making optical vortices with computer-generated holograms[J]. Am J Phys, 2008, 76(10): 916−921. doi: 10.1119/1.2955792

    CrossRef Google Scholar

    [26] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Opt Commun, 1994, 112(5–6): 321−327. doi: 10.1016/0030-4018(94)90638-6

    CrossRef Google Scholar

    [27] Hao X, Kuang C F, Wang T T, et al. Phase encoding for sharper focus of the azimuthally polarized beam[J]. Opt Lett, 2010, 35(23): 3928−3930. doi: 10.1364/OL.35.003928

    CrossRef Google Scholar

    [28] Zhao Z, Wang J, Li S H, et al. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams[J]. Opt Lett, 2013, 38(6): 932−934. doi: 10.1364/OL.38.000932

    CrossRef Google Scholar

    [29] Qiu C W, Palima D, Novitsky A, et al. Engineering light-matter interaction for emerging optical manipulation applications[J]. Nanophotonics, 2014, 3(3): 181−201. doi: 10.1515/nanoph-2013-0055

    CrossRef Google Scholar

    [30] Zhang B X, Chen Z Z, Sun H, et al. Vectorial optical vortex filtering for edge enhancement[J]. J Opt, 2016, 18(3): 035703. doi: 10.1088/2040-8978/18/3/035703

    CrossRef Google Scholar

    [31] Liu Y, Cline D, He P. Vacuum laser acceleration using a radially polarized CO2 laser beam[J]. Nucl Instrum Methods Phys Res, 1999, 424(2–3): 296−303. doi: 10.1016/S0168-9002(98)01433-8

    CrossRef Google Scholar

    [32] Tang J, Ming Y, Chen Z X, et al. Entanglement of photons with complex spatial structure in Hermite-Laguerre-Gaussian modes[J]. Phys Rev A, 2016, 94(1): 012313. doi: 10.1103/PhysRevA.94.012313

    CrossRef Google Scholar

    [33] Zhang Y, Li P, Liu S, et al. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams[J]. Opt Lett, 2015, 40(19): 4444−4447. doi: 10.1364/OL.40.004444

    CrossRef Google Scholar

    [34] Liu Y C, Ke Y G, Luo H L, et al. Photonic spin Hall effect in metasurfaces: a brief review[J]. Nanophotonics, 2016, 6(1): 51−70. doi: 10.1515/nanoph-2015-0155

    CrossRef Google Scholar

    [35] Kim D, Choi H, Brendel T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040

    CrossRef Google Scholar

    [36] Chen H, Hao J J, Zhang B F, et al. Generation of vector beam with space-variant distribution of both polarization and phase[J]. Opt Lett, 2011, 36(16): 3179−3181. doi: 10.1364/OL.36.003179

    CrossRef Google Scholar

    [37] Oron R, Blit S, Davidson N, et al. The formation of laser beams with pure azimuthal or radial polarization[J]. Appl Phys Lett, 2000, 77(21): 3322−3324. doi: 10.1063/1.1327271

    CrossRef Google Scholar

    [38] Lin X J, Feng Q C, Zhu Y, et al. Diode-pumped wavelength-switchable visible Pr3+: YLF laser and vortex laser around 670 nm[J]. Opto-Electron Adv, 2021, 4(4): 210006. doi: 10.29026/oea.2021.210006

    CrossRef Google Scholar

    [39] Lin X, Liu J P, Hao J Y, et al. Collinear holographic data storage technologies[J]. Opto-Electron Adv, 2020, 3(3): 190004. doi: 10.29026/oea.2020.190004

    CrossRef Google Scholar

    [40] Horimai H, Tan X D, Li J. Collinear holography[J]. Appl Opt, 2005, 44(13): 2575−2579. doi: 10.1364/AO.44.002575

    CrossRef Google Scholar

    [41] 魏然, 臧金亮, 刘颖, 等. 应用于高密度存储的偏光全息技术研究进展[J]. 光电工程, 2019, 46(3): 180598. doi: 10.12086/oee.2019.180598

    CrossRef Google Scholar

    Wei R, Zang J L, Liu Y, et al. Review on polarization holography for high density storage[J]. Opto-Electron Eng, 2019, 46(3): 180598. doi: 10.12086/oee.2019.180598

    CrossRef Google Scholar

    [42] Xu X M, Zhang Y Y, Song H Y, et al. Generation of circular polarization with an arbitrarily polarized reading wave[J]. Opt Express, 2021, 29(2): 2613−2623. doi: 10.1364/OE.414531

    CrossRef Google Scholar

    [43] Kakichashvili S D. Method for phase polarization recording of holograms[J]. Sov J Quantum Electron, 1974, 4(6): 795−798. doi: 10.1070/QE1974v004n06ABEH009334

    CrossRef Google Scholar

    [44] Kuroda K, Matsuhashi Y, Fujimura R, et al. Theory of polarization holography[J]. Opt Rev, 2011, 18(5): 374−382. doi: 10.1007/s10043-011-0072-5

    CrossRef Google Scholar

    [45] Kuroda K, Matsuhashi Y, Shimura T. Reconstruction characteristics of polarization holograms[C]//Proceeding of the 2012 11th Euro-American Workshop on Information Optics, Quebec City, 2012: 1–2. doi: 10.1109/WIO.2012.6488904.

    Google Scholar

    [46] Zang J L, Wu A A, Liu Y, et al. Characteristics of volume polarization holography with linear polarization light[J]. Opt Rev, 2015, 22(5): 829−831. doi: 10.1007/s10043-015-0122-5

    CrossRef Google Scholar

    [47] Wu A A, Kang G G, Zang J L, et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle[J]. Opt Express, 2015, 23(7): 8880−8887. doi: 10.1364/OE.23.008880

    CrossRef Google Scholar

    [48] Wang J, Kang G, Wu A, et al. Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram[J]. Opt Express, 2016, 24(2): 1641−1647. doi: 10.1364/OE.24.001641

    CrossRef Google Scholar

    [49] Huang Z Y, He Y W, Dai T G, et al. Null reconstruction in orthogonal elliptical polarization holography read by non-orthogonal reference wave[J]. Opt Lasers Eng, 2020, 131: 106144. doi: 10.1016/j.optlaseng.2020.106144

    CrossRef Google Scholar

    [50] Shao L, Zang J L, Fan F L, et al. Investigation of the null reconstruction effect of an orthogonal elliptical polarization hologram at a large recording angle[J]. Appl Opt, 2019, 58(36): 9983−9989. doi: 10.1364/AO.58.009983

    CrossRef Google Scholar

    [51] Huang Z Y, Wu C H, Chen Y X, et al. Faithful reconstruction in orthogonal elliptical polarization holography read by different polarized waves[J]. Opt Express, 2020, 28(16): 23679−23689. doi: 10.1364/OE.399704

    CrossRef Google Scholar

    [52] Huang Z Y, He Y W, Dai T G, et al. Prerequisite for faithful reconstruction of orthogonal elliptical polarization holography[J]. Opt Eng, 2020, 59(10): 102409. doi: 10.1117/1.OE.59.10.102409

    CrossRef Google Scholar

    [53] Wang J Y, Qi P L, Chen Y X, et al. Faithful reconstruction of linear polarization wave without dielectric tensor constraint[J]. Opt Express, 2021, 29(9): 14033−14040. doi: 10.1364/OE.418519

    CrossRef Google Scholar

    [54] 齐沛良, 王瑾瑜, 宋海洋, 等. 线偏振光全息的忠实再现条件研究[J]. 光学学报, 2020, 40(23): 2309001. doi: 10.3788/AOS202040.2309001

    CrossRef Google Scholar

    Qi P L, Wang J Y, Song H Y, et al. Faithful reconstruction condition of linear polarization holography[J]. Acta Optica Sinica, 2020, 40(23): 2309001. doi: 10.3788/AOS202040.2309001

    CrossRef Google Scholar

    [55] Hong Y F, Kang G G, Zang J L, et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography[J]. Appl Opt, 2017, 56(36): 10024−10029. doi: 10.1364/AO.56.010024

    CrossRef Google Scholar

    [56] Huang Z Y, Chen Y X, Song H Y, et al. Faithful reconstruction in polarization holography suitable for high-speed recording and reconstructing[J]. Opt Lett, 2020, 45(22): 6282−6285. doi: 10.1364/OL.405354

    CrossRef Google Scholar

    [57] 陈天宇, 王长顺, 潘雨佳, 等. 利用全息法在偶氮聚合物薄膜中记录涡旋光场[J]. 物理学报, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496

    CrossRef Google Scholar

    Chen T Y, Wang C S, Pan Y J, et al. Recording optical vortices in azo polymer films by applying holographic method[J]. Acta Phys Sin, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496

    CrossRef Google Scholar

    [58] Yi X N, Liu Y C, Ling X H, et al. Hybrid-order Poincaré sphere[J]. Phys Rev A, 2015, 91(2): 023801. doi: 10.1103/PhysRevA.91.023801

    CrossRef Google Scholar

    [59] Poincaré H. Theorie Mathematique de la Lumiere[M]. Paris: G. Carré, 1892.

    Google Scholar

    [60] Zheng S J, Liu H J, Lin A Y, et al. Scalar vortex beam produced through faithful reconstruction of polarization holography[J]. Opt Express, 2021, 29(26): 43193−43202. doi: 10.1364/OE.445360

    CrossRef Google Scholar

    [61] Wang J Y, Tan X D, Qi P L, et al. Linear polarization holography[J]. Opto-Electron Sci, 2022, 1(2): 210009. doi: 10.29026/oes.2022.210009

    CrossRef Google Scholar

    [62] Wang J Y, Qi P L, Lin A Y, et al. Exposure response coefficient of polarization-sensitive media using tensor theory of polarization holography[J]. Opt Lett, 2021, 46(19): 4789−4792. doi: 10.1364/OL.431637

    CrossRef Google Scholar

    [63] Zang J L, Kang G G, Li P, et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography[J]. Opt Lett, 2017, 42(7): 1377−1380. doi: 10.1364/OL.42.001377

    CrossRef Google Scholar

    [64] Zhai Y Y, Gao L, Liu Y, et al. A review of polarization-sensitive materials for polarization holography[J]. Materials, 2020, 13(23): 5562. doi: 10.3390/ma13235562

    CrossRef Google Scholar

    [65] Huang L, Zhang Y Y, Zhang Q, et al. Generation of a vector light field based on polarization holography[J]. Opt Lett, 2021, 46(18): 4542−4545. doi: 10.1364/OL.438070

    CrossRef Google Scholar

    [66] 周洋, 李新忠, 王静鸽, 等. 涡旋光束拓扑荷值的干涉测量方法[J]. 河南科技大学学报(自然科学版), 2016, 37(3): 95−99. doi: 10.15926/j.cnki.issn1672-6871.2016.03.021

    CrossRef Google Scholar

    Zhou Y, Li X Z, Wang J G, et al. Topological charges measurement of optical vortex beam by interference methods[J]. Journal of Henan University of Science & Technology (Natural Science), 2016, 37(3): 95−99. doi: 10.15926/j.cnki.issn1672-6871.2016.03.021

    CrossRef Google Scholar

    [67] Zheng S J, Ke S H, Liu H J, et al. Simple method for generating special beams using polarization holography[J]. Opt Express, 2022, 30(10): 16159−16173. doi: 10.1364/OE.453890

    CrossRef Google Scholar

    [68] Milione G, Sztul H I, Nolan D A. Higher-order poincaré sphere, stokes parameters, and the angular momentum of light[J]. Phys Rev Lett, 2011, 107(5): 053601. doi: 10.1103/PhysRevLett.107.053601

    CrossRef Google Scholar

  • Polarization holography has important application prospects in the field of data storage and polarized light imaging due to its ability to record amplitude, phase, and polarization information. In addition, it also has the ability to regulate light fields, which can regulate special light fields with helical phase distribution and spatial polarization distribution. Such special light fields have broad application prospects in the fields of optical communication, particle manipulation, photon entanglement, etc. There is also a lot of researches focused on how to generate such beams, such as helical phase plates, mode conversion, spatial light modulators, etc. However, the traditional method requires the construction of a relatively large optical system, which limits its application in fields such as integrated optics. The introduction of the beam preparation method of polarization holography can reduce the volume of the optical system to a certain extent. At the same time, the use of polarization-sensitive materials with the ability to record multi-dimensional information greatly reduces the cost on the one hand. On the other hand, it is easy to operate during the preparation process, which is expected to be an ideal material for beam preparation to some extent. Based on the introduction of the principle of faithful reconstruction of any polarization state by polarization holography, this paper reviews the research progress of generating vector beams, scalar vortex beams, and vector vortex beams based on polarization holography in the past two years. Faithful reconstruction for any polarization state refers to under the incident into the polarization-sensitive material at 90 degrees interference angle between the signal and reference waves, the recording and reading waves are p-polarized and the reconstruction wave can be reconstructed correctly. Phenanthrenequinone-doped polymethyl methacrylate photopolymer (PQ/PMMA) is used as a recording material in the experiment. First, the single control ability of polarization holography in polarization and phase is demonstrated respectively, and then the ability of polarization holography to control both polarization and phase at the same time is further introduced. Based on the characteristics of polarization holography, the signal optical path is regulated, and the vector beam, scalar vortex beam, and vector vortex beam are generated by setting the initial azimuth angle of the rotating components and adjusting their relative rotational angular velocity under dynamic exposure. In the fabrication process, the desired beam can be generated by simply controlling the parameters of some devices. Finally, the ability and prospect of generating special light fields based on polarization holography are briefly summarized and discussed.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(9557) PDF downloads(1274) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint