Zhao Y Y, Jin F, Dong X Z, et al. Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology[J]. Opto-Electron Eng, 2023, 50(3): 220048. doi: 10.12086/oee.2023.220048
Citation: Zhao Y Y, Jin F, Dong X Z, et al. Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology[J]. Opto-Electron Eng, 2023, 50(3): 220048. doi: 10.12086/oee.2023.220048

Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology

    Fund Project: the Science and Technology Planning Project of Guangzhou (202007010002), National Natural Science Foundation of China (62005097), the Natural Science Foundation of Guangdong Province (2020A1515011529), and the Guangzhou Basic and Applied Basic Research Project (202102020999)
More Information
  • Femtosecond laser two-photon polymerization (TPP) micro-nano fabrication technology, as an important method for the preparation of three-dimensional (3D) micro-nanostructures, has become a hot spot of international frontier research. Using the two-photon absorption effect and the threshold effect of the interaction between laser and matter, this technology can break through the diffraction limit of classical optical theory and achieve nanoscale laser fabrication resolution. It is expected to play an important role in the field of 3D functional micro-nano device fabrication. In this paper, the basic principles of photophysical and photochemical processes in femtosecond pulsed laser TPP fabrication technology will be described, and the research progress and development of this technology in improving line width and fabrication resolution, and improving fabrication efficiency will be reviewed. Then, using the high spatial resolution and true 3D fabrication characteristics of femtosecond laser TPP micro-nano fabrication technology, the researchers prepared various micro-optical devices, integrated optical devices, micro-electromechanical systems, and biomedical devices, fully demonstrating the application prospect of this technology. Finally, how to achieve high-precision, high-efficiency, low-cost, large-area, multi-functional materials and microstructure fabrication, as well as existing challenges and future development directions are discussed and prospected.
  • 加载中
  • [1] Pimpin A, Srituravanich W. Review on micro- and nanolithography techniques and their applications[J]. Eng J, 2012, 16(1): 37−56. doi: 10.4186/ej.2012.16.1.37

    CrossRef Google Scholar

    [2] Rothschild M. Projection optical lithography[J]. Mater Today, 2005, 8(2): 18−24. doi: 10.1016/S1369-7021(05)00698-X

    CrossRef Google Scholar

    [3] Fay B. Advanced optical lithography development, from UV to EUV[J]. Microelectron Eng, 2002, 61-62: 11−24. doi: 10.1016/S0167-9317(02)00427-6

    CrossRef Google Scholar

    [4] Silverman J P. Challenges and progress in x-ray lithography[J]. J Vac Sci Technol B Microelectron Nanometer Struct Process, Meas, Phenom, 1998, 16(6): 3137−3141. doi: 10.1116/1.590452

    CrossRef Google Scholar

    [5] Vieu C, Carcenac F, Pépin A, et al. Electron beam lithography: resolution limits and applications[J]. Appl Surf Sci, 2000, 164(1-4): 111−117. doi: 10.1016/S0169-4332(00)00352-4

    CrossRef Google Scholar

    [6] Manfrinato V R, Zhang L H, Su D, et al. Resolution limits of electron-beam lithography toward the atomic scale[J]. Nano Lett, 2013, 13(4): 1555−1558. doi: 10.1021/nl304715p

    CrossRef Google Scholar

    [7] Watt F, Bettiol A A, Van Kan J A, et al. Ion beam lithography and nanofabrication: a review[J]. Int J Nanosci, 2005, 4(3): 269−286. doi: 10.1142/S0219581X05003139

    CrossRef Google Scholar

    [8] Guo L J. Nanoimprint lithography: methods and material requirements[J]. Adv Mater, 2007, 19(4): 495−513. doi: 10.1002/adma.200600882

    CrossRef Google Scholar

    [9] Cox L M, Martinez A M, Blevins A K, et al. Nanoimprint lithography: emergent materials and methods of actuation[J]. Nano Today, 2020, 31: 100838. doi: 10.1016/j.nantod.2019.100838

    CrossRef Google Scholar

    [10] Pan D Z. Directed self-assembly for advanced chips[J]. Nat Electron, 2018, 1(10): 530−531. doi: 10.1038/s41928-018-0152-7

    CrossRef Google Scholar

    [11] 董贤子, 陈卫强, 赵震声, 等. 飞秒脉冲激光双光子微纳加工技术及其应用[J]. 科学通报, 2008, 53(1): 2−13. doi: 10.3321/j.issn:0023-074X.2008.01.002

    CrossRef Google Scholar

    Dong X Z, Chen W Q, Zhao Z S, et al. Femtosecond laser two-photon micro-/nano-fabrication and its applications[J]. Chin Sci Bull, 2008, 53(1): 2−13. doi: 10.3321/j.issn:0023-074X.2008.01.002

    CrossRef Google Scholar

    [12] 孙树峰, 王萍萍. 飞秒激光双光子聚合加工微纳结构[J]. 红外与激光工程, 2018, 47(12): 1206009. doi: 10.3788/IRLA201847.1206009

    CrossRef Google Scholar

    Sun S F, Wang P P. Micro/nano structures fabricated by two-photon photopolymerization of femtosecond laser[J]. Infrared Laser Eng, 2018, 47(12): 1206009. doi: 10.3788/IRLA201847.1206009

    CrossRef Google Scholar

    [13] Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435−448. doi: 10.1016/j.nantod.2010.08.007

    CrossRef Google Scholar

    [14] Fourkas J T. Nanoscale photolithography with visible light[J]. J Phys Chem Lett, 2010, 1(8): 1221−1227. doi: 10.1021/jz1002082

    CrossRef Google Scholar

    [15] 赵圆圆. 微尺度结构的功能化及其集成制备技术研究[D]. 北京: 中国科学院大学, 2016.

    Google Scholar

    Zhao Y Y. Research on functionalization of microscale structures and their integrated fabrication technology[D]. Beijing: University of Chinese Academy of Sciences, 2016

    Google Scholar

    [16] 郑美玲, 金峰, 董贤子, 等. 双光子光聚合与功能微纳结构制备[J]. 影像科学与光化学, 2017, 35(4): 413−428. doi: 10.7517/j.issn.1674-0475.2017.04.006

    CrossRef Google Scholar

    Zheng M L, Jin F, Dong X Z, et al. Two-photon photopolymerization and functional micro/nanostructure fabrication[J]. Imag Sci Photochem, 2017, 35(4): 413−428. doi: 10.7517/j.issn.1674-0475.2017.04.006

    CrossRef Google Scholar

    [17] Hohmann J K, Renner M, Waller E H, et al. Three-dimensional μ-printing: an enabling technology[J]. Adv Opt Mater, 2015, 3(11): 1488−1507. doi: 10.1002/adom.201500328

    CrossRef Google Scholar

    [18] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Opt Lett, 1997, 22(2): 132−134. doi: 10.1364/OL.22.000132

    CrossRef Google Scholar

    [19] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697−698. doi: 10.1038/35089130

    CrossRef Google Scholar

    [20] Li L J, Fourkas J T. Multiphoton polymerization[J]. Mater Today, 2007, 10(6): 30−37. doi: 10.1016/S1369-7021(07)70130-X

    CrossRef Google Scholar

    [21] Lu W E, Dong X Z, Chen W Q, et al. Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization[J]. J Mater Chem, 2011, 21(15): 5650−5659. doi: 10.1039/c0jm04025h

    CrossRef Google Scholar

    [22] Layani M, Wang X F, Magdassi S. Novel materials for 3D printing by photopolymerization[J]. Adv Mater, 2018, 30(41): 1706344. doi: 10.1002/adma.201706344

    CrossRef Google Scholar

    [23] Arnoux C, Konishi T, Van Elslande E, et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-Section: toward high-resolution photoresist with improved sensitivity[J]. Macromolecules, 2020, 53(21): 9264−9278. doi: 10.1021/acs.macromol.0c01518

    CrossRef Google Scholar

    [24] Cônsoli P M, Otuka A J G, Balogh D T, et al. Feature size reduction in two‐photon polymerization by optimizing resin composition[J]. J Polym Sci Part B Polym Phys, 2018, 56(16): 1158−1163. doi: 10.1002/polb.24635

    CrossRef Google Scholar

    [25] Malinauskas M, Žukauskas A, Bičkauskaitė G, et al. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses[J]. Opt Express, 2010, 18(10): 10209−10221. doi: 10.1364/OE.18.010209

    CrossRef Google Scholar

    [26] Jeong H Y, Lee E, An S C, et al. 3D and 4D printing for optics and metaphotonics[J]. Nanophotonics, 2020, 9(5): 1139−1160. doi: 10.1515/nanoph-2019-0483

    CrossRef Google Scholar

    [27] Xiong C, Liao C R, Li Z Y, et al. Optical fiber integrated functional micro-/nanostructure induced by two-Photon polymerization[J]. Front Mater, 2020, 7: 586496. doi: 10.3389/fmats.2020.586496

    CrossRef Google Scholar

    [28] Koo S. Advanced micro-actuator/robot fabrication using ultrafast laser direct writing and its remote control[J]. Appl Sci, 2020, 10(23): 8563. doi: 10.3390/app10238563

    CrossRef Google Scholar

    [29] Harinarayana V, Shin Y C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review[J]. Opt Laser Technol, 2021, 142: 107180. doi: 10.1016/j.optlastec.2021.107180

    CrossRef Google Scholar

    [30] Otuka A J G, Tomazio N B, Paula K T, et al. Two-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffolds[J]. Polymers, 2021, 13(12): 1994. doi: 10.3390/polym13121994

    CrossRef Google Scholar

    [31] Göppert-Mayer M. Elementary processes with two quantum transitions[J]. Ann Phys, 2009, 521(7-8): 466−479. doi: 10.1002/andp.200952107-804

    CrossRef Google Scholar

    [32] Kaiser W, Garrett C G B. Two-photon excitation in CaF2: Eu2+[J]. Phys Rev Lett, 1961, 7(6): 229−231. doi: 10.1103/PhysRevLett.7.229

    CrossRef Google Scholar

    [33] Wloka T, Gottschaldt M, Schubert U S. From light to structure: photo initiators for radical two‐photon polymerization[J]. Chem–Eur J, 2022, 28(32): e202104191. doi: 10.1002/chem.202104191

    CrossRef Google Scholar

    [34] Mukherjee A. Two-photon pumped upconverted lasing in dye doped polymer waveguides[J]. Appl Phys Lett, 1993, 62(26): 3423−3425. doi: 10.1063/1.109036

    CrossRef Google Scholar

    [35] Watanabe M, Juodkazis S, Sun H B, et al. Two-photon readout of three-dimensional memory in silica[J]. Appl Phys Lett, 2000, 77(1): 13−15. doi: 10.1063/1.126861

    CrossRef Google Scholar

    [36] Yamasaki K, Juodkazis S, Watanabe M, et al. Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films[J]. Appl Phys Lett, 2000, 76(8): 1000−1002. doi: 10.1063/1.125919

    CrossRef Google Scholar

    [37] Kirkpatrick S M, Baur J W, Clark C M, et al. Holographic recording using two-photon-induced photopolymerization[J]. Appl Phys A, 1999, 69(4): 461−464. doi: 10.1007/s003390051033

    CrossRef Google Scholar

    [38] Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Opt Lett, 1991, 16(22): 1780−1782. doi: 10.1364/OL.16.001780

    CrossRef Google Scholar

    [39] Sun H B, Tanaka T, Takada K, et al. Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes[J]. Appl Phys Lett, 2001, 79(10): 1411−1413. doi: 10.1063/1.1399312

    CrossRef Google Scholar

    [40] Diaspro A, Robello M. Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures[J]. J Photochem Photobiol B Biol, 2000, 55(1): 1−8. doi: 10.1016/S1011-1344(00)00028-2

    CrossRef Google Scholar

    [41] Kuebler S M, Rumi M, Watanabe T, et al. Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication[J]. J Photopolym Sci Technol, 2001, 14(4): 657−668. doi: 10.2494/photopolymer.14.657

    CrossRef Google Scholar

    [42] Sun H B, Kawata S. Two-photon laser precision microfabrication and its applications to micro-nano devices and systems[J]. J Lightw Technol, 2003, 21(3): 624−633. doi: 10.1109/JLT.2003.809564

    CrossRef Google Scholar

    [43] Liaros N, Fourkas J T. The characterization of absorptive nonlinearities[J]. Laser Photonics Rev, 2017, 11(5): 1700106. doi: 10.1002/lpor.201700106

    CrossRef Google Scholar

    [44] Liaros N, Fourkas J T. Methods for determining the effective order of absorption in radical multiphoton photoresists: a critical analysis[J]. Laser Photonics Rev, 2021, 15(1): 2000203. doi: 10.1002/lpor.202000203

    CrossRef Google Scholar

    [45] Baldacchini T. Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications[M]. Amsterdam: Elsevier, 2015.

    Google Scholar

    [46] Skliutas E, Lebedevaite M, Kabouraki E, et al. Polymerization mechanisms initiated by spatio-temporally confined light[J]. Nanophotonics, 2021, 10(4): 1211−1242. doi: 10.1515/nanoph-2020-0551

    CrossRef Google Scholar

    [47] Bauhofer A. Multiscale effects of photochemical shrinkage in direct laser writing[D]. Zurich: ETH Zurich, 2019.

    Google Scholar

    [48] Schafer K J, Hales J M, Balu M, et al. Two-photon absorption cross-sections of common photoinitiators[J]. J Photoch Photobio A Chem, 2004, 162(2-3): 497−502. doi: 10.1016/S1010-6030(03)00394-0

    CrossRef Google Scholar

    [49] Fischer J, Mueller J B, Kaschke J, et al. Three-dimensional multi-photon direct laser writing with variable repetition rate[J]. Opt Express, 2013, 21(22): 26244−26260. doi: 10.1364/OE.21.026244

    CrossRef Google Scholar

    [50] Parkatzidis K, Kabouraki E, Selimis A, et al. Initiator-free, multiphoton polymerization of gelatin methacrylamide[J]. Macromol Mater Eng, 2018, 303(12): 1800458. doi: 10.1002/mame.201800458

    CrossRef Google Scholar

    [51] Lebedevaite M, Ostrauskaite J, Skliutas E, et al. Photoinitiator free resins composed of plant-derived monomers for the optical µ-3D printing of thermosets[J]. Polymers, 2019, 11(1): 116. doi: 10.3390/polym11010116

    CrossRef Google Scholar

    [52] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Phy Rev B, 1996, 53(4): 1749−1761. doi: 10.1103/PhysRevB.53.1749

    CrossRef Google Scholar

    [53] Hankin S M, Villeneuve D M, Corkum P B, et al. Nonlinear ionization of organic molecules in high intensity laser fields[J]. Phys Rev Lett, 2000, 84(22): 5082−5085. doi: 10.1103/PhysRevLett.84.5082

    CrossRef Google Scholar

    [54] 马文超, 邱迎昕. 基于光聚合技术的3D打印材料及未来发展方向[J]. 广东化工, 2019, 46(10): 91−92. doi: 10.3969/j.issn.1007-1865.2019.10.038

    CrossRef Google Scholar

    Ma W C, Qiu Y X. Mechanisms and future direction of 3D printing using photopolymerization[J]. Guangdong Chem Ind, 2019, 46(10): 91−92. doi: 10.3969/j.issn.1007-1865.2019.10.038

    CrossRef Google Scholar

    [55] Kiefer P, Hahn V, Nardi M, et al. Sensitive photoresists for rapid multiphoton 3D laser micro-and nanoprinting[J]. Adv Opt Mater, 2020, 8(19): 2000895. doi: 10.1002/adom.202000895

    CrossRef Google Scholar

    [56] Carlotti M, Mattoli V. Functional materials for two‐photon polymerization in microfabrication[J]. Small, 2019, 15(40): 1902687. doi: 10.1002/smll.201902687

    CrossRef Google Scholar

    [57] Serbin J, Egbert A, Ostendorf A, et al. Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics[J]. Opt Lett, 2003, 28(5): 301−303. doi: 10.1364/OL.28.000301

    CrossRef Google Scholar

    [58] Doğruyol Z, Arsu N, Doğruyol S K, et al. Producing critical exponents from gelation for various photoinitiator concentrations; a photo differential scanning calorimetric study[J]. Prog Org Coat, 2012, 74(1): 181−185. doi: 10.1016/j.porgcoat.2011.12.007

    CrossRef Google Scholar

    [59] Goodner M D, Bowman C N. Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics[J]. Macromolecules, 1999, 32(20): 6552−6559. doi: 10.1021/ma9901947

    CrossRef Google Scholar

    [60] Williams C G, Malik A N, Kim T K, et al. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation[J]. Biomaterials, 2005, 26(11): 1211−1218. doi: 10.1016/j.biomaterials.2004.04.024

    CrossRef Google Scholar

    [61] Winter H H, Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point[J]. J Rheol, 1986, 30(2): 367−382. doi: 10.1122/1.549853

    CrossRef Google Scholar

    [62] Friedrich C, Heymann L. Extension of a model for crosslinking polymer at the gel point[J]. J Rheol, 1988, 32(3): 235−241. doi: 10.1122/1.549971

    CrossRef Google Scholar

    [63] Schwärzle D, Hou X, Prucker O, et al. Polymer microstructures through two‐photon crosslinking[J]. Adv Mater, 2017, 29(39): 1703469. doi: 10.1002/adma.201703469

    CrossRef Google Scholar

    [64] Anseth K S, Bowman C N, Peppas N A. Polymerization kinetics and volume relaxation behavior of photopolymerized multifunctional monomers producing highly crosslinked networks[J]. J Polym Sci Part A Polym Chem, 1994, 32(1): 139−147. doi: 10.1002/pola.1994.080320116

    CrossRef Google Scholar

    [65] Decker C, Jenkins A D. Kinetic approach of oxygen inhibition in ultraviolet-and laser-induced polymerizations[J]. Macromolecules, 1985, 18(6): 1241−1244. doi: 10.1021/ma00148a034

    CrossRef Google Scholar

    [66] Cicha K, Li Z Q, Stadlmann K, et al. Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy[J]. J Appl Phys, 2011, 110(6): 064911. doi: 10.1063/1.3639304

    CrossRef Google Scholar

    [67] Jiang L J, Zhou Y S, Xiong W, et al. Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy[J]. Opt Lett, 2014, 39(10): 3034−3037. doi: 10.1364/OL.39.003034

    CrossRef Google Scholar

    [68] Burmeister F, Steenhusen S, Houbertz R, et al. Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization[J]. J Laser Appl, 2012, 24(4): 042014. doi: 10.2351/1.4730807

    CrossRef Google Scholar

    [69] Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Appl Phys Lett, 2002, 80(2): 312−314. doi: 10.1063/1.1432450

    CrossRef Google Scholar

    [70] Odian G. Principles of Polymerization[M]. 4th ed. Hoboken: John Wiley & Sons, 2004.

    Google Scholar

    [71] Yang L, Münchinger A, Kadic M, et al. On the schwarzschild effect in 3D two-photon laser lithography[J]. Adv Opt Mater, 2019, 7(22): 1901040. doi: 10.1002/adom.201901040

    CrossRef Google Scholar

    [72] Muller J B. Exploring the mechanisms of Three-Dimensional direct laser writing by multi-photon polymerization[D]. Karlsruhe: Karlsruher Institut für Technologie, 2015.

    Google Scholar

    [73] Wang S H, Yu Y, Liu H L, et al. Sub-10-nm suspended nano-web formation by direct laser writing[J]. Nano Futures, 2018, 2(2): 025006. doi: 10.1088/2399-1984/aabb94

    CrossRef Google Scholar

    [74] 宋旸, 董贤子, 赵震声, 等. 飞秒激光双光子加工的极限分辨力[J]. 强激光与粒子束, 2011, 23(7): 1780−1784. doi: 10.3788/HPLPB20112307.1780

    CrossRef Google Scholar

    Song Y, Dong X Z, Zhao Z S, et al. Investigation into ultimate resolution by femtosecond laser two-photon fabrication technique[J]. High Power Laser Part Beams, 2011, 23(7): 1780−1784. doi: 10.3788/HPLPB20112307.1780

    CrossRef Google Scholar

    [75] 张心正, 夏峰, 许京军. 激光超衍射加工机理与研究进展[J]. 物理学报, 2017, 66(4): 144207. doi: 10.7498/aps.66.144207

    CrossRef Google Scholar

    Zhang X Z, Xia F, Xu J J. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit[J]. Acta Phys Sin, 2017, 66(4): 144207. doi: 10.7498/aps.66.144207

    CrossRef Google Scholar

    [76] Zhou X Q, Hou Y H, Lin J Q. A review on the processing accuracy of two-photon polymerization[J]. AIP Adv, 2015, 5(3): 030701. doi: 10.1063/1.4916886

    CrossRef Google Scholar

    [77] Fischer J. Three-dimensional optical lithography beyond the diffraction limit[D]. Verlag Nicht Ermittelbar, 2012.

    Google Scholar

    [78] Adão R M R, Alves T L, Maibohm C, et al. Two-photon polymerization simulation and fabrication of 3D microprinted suspended waveguides for on-chip optical interconnects[J]. Opt Express, 2022, 30(6): 9623−9642. doi: 10.1364/OE.449641

    CrossRef Google Scholar

    [79] Pikulin A, Bityurin N. Spatial resolution in polymerization of sample features at nanoscale[J]. Phys Rev B, 2007, 75(19): 195430. doi: 10.1103/PhysRevB.75.195430

    CrossRef Google Scholar

    [80] Li W, Cao T X, Zhai Z H, et al. Influence of evanescent waves on the voxel profile in multipulse multiphoton polymerization nanofabrication[J]. Nanotechnology, 2013, 24(21): 215301. doi: 10.1088/0957-4484/24/21/215301

    CrossRef Google Scholar

    [81] He Z Q, Lee Y H, Gou F W, et al. Polarization-independent phase modulators enabled by two-photon polymerization[J]. Opt Express, 2017, 25(26): 33688−33694. doi: 10.1364/OE.25.033688

    CrossRef Google Scholar

    [82] Zandrini T, Liaros N, Jiang L J, et al. Effect of the resin viscosity on the writing properties of two-photon polymerization[J]. Opt Mater Express, 2019, 9(6): 2601−2616. doi: 10.1364/OME.9.002601

    CrossRef Google Scholar

    [83] Cao D Z, Ge G J, Wang K G. Two-photon subwavelength lithography with thermal light[J]. Appl Phys Lett, 2010, 97(5): 051105. doi: 10.1063/1.3472112

    CrossRef Google Scholar

    [84] Mueller J B, Fischer J, Mange Y J, et al. In-situ local temperature measurement during three-dimensional direct laser writing[J]. Appl Phys Lett, 2013, 103(12): 123107. doi: 10.1063/1.4821556

    CrossRef Google Scholar

    [85] Hu Z Y, Sun Y L, Hua J G, et al. Femtosecond laser nano-fabrication with extended processing range[J]. IEEE Photonics Technol Lett, 2019, 31(2): 133−136. doi: 10.1109/LPT.2018.2884568

    CrossRef Google Scholar

    [86] Obata K, El-Tamer A, Koch L, et al. High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP)[J]. Light Sci Appl, 2013, 2(12): e116. doi: 10.1038/lsa.2013.72

    CrossRef Google Scholar

    [87] Chu W, Tan Y X, Wang P, et al. Centimeter‐height 3D printing with femtosecond laser two-photon polymerization[J]. Adv Mater Technol, 2018, 3(5): 1700396. doi: 10.1002/admt.201700396

    CrossRef Google Scholar

    [88] Klar T A, Wollhofen R, Jacak J. Sub-Abbe resolution: from STED microscopy to STED lithography[J]. Phys Scr, 2014, 2014(T162): 014049.

    Google Scholar

    [89] Fischer J, Mueller J B, Quick A S, et al. Exploring the mechanisms in STED-enhanced direct laser writing[J]. Adv Opt Mater, 2015, 3(2): 221−232. doi: 10.1002/adom.201400413

    CrossRef Google Scholar

    [90] Cheng H, Golvari P, Xia C, et al. High-throughput microfabrication of axially tunable helices[J]. Photonics Res, 2022, 10(2): 303−315. doi: 10.1364/PRJ.439592

    CrossRef Google Scholar

    [91] Yang L, Qian D D, Xin C, et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam[J]. Opt Lett, 2017, 42(4): 743−746. doi: 10.1364/OL.42.000743

    CrossRef Google Scholar

    [92] Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms[J]. Opt Express, 2014, 22(20): 24217−24223. doi: 10.1364/OE.22.024217

    CrossRef Google Scholar

    [93] Manousidaki M, Papazoglou D G, Farsari M, et al. 3D holographic light shaping for advanced multiphoton polymerization[J]. Opt Lett, 2020, 45(1): 85−88. doi: 10.1364/OL.45.000085

    CrossRef Google Scholar

    [94] Jenness N J, Wulff K D, Johannes M S, et al. Three-dimensional parallel holographic micropatterning using a spatial light modulator[J]. Opt Express, 2008, 16(20): 15942−15948. doi: 10.1364/OE.16.015942

    CrossRef Google Scholar

    [95] Lin H, Jia B H, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication[J]. Opt Lett, 2011, 36(3): 406−408. doi: 10.1364/OL.36.000406

    CrossRef Google Scholar

    [96] Obata K, Koch J, Hinze U, et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation[J]. Opt Express, 2010, 18(16): 17193−17200. doi: 10.1364/OE.18.017193

    CrossRef Google Scholar

    [97] Sun H B, Tanaka T, Kawata S. Three-dimensional focal spots related to two-photon excitation[J]. Appl Phys Lett, 2002, 80(20): 3673−3675. doi: 10.1063/1.1478128

    CrossRef Google Scholar

    [98] Takada K, Sun H B, Kawata S. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting[J]. Appl Phys Lett, 2005, 86(7): 071122. doi: 10.1063/1.1864249

    CrossRef Google Scholar

    [99] Takada K, Sun H B, Kawata S. The study on spatial resolution in two-photon induced polymerization[J]. Proc SPIE, 2006, 6110: 61100A.

    Google Scholar

    [100] Xing J F, Dong X Z, Chen W Q, et al. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency[J]. Appl Phys Lett, 2007, 90(13): 131106. doi: 10.1063/1.2717532

    CrossRef Google Scholar

    [101] Emons M, Obata K, Binhammer T, et al. Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses[J]. Opt Mater Express, 2012, 2(7): 942−947. doi: 10.1364/OME.2.000942

    CrossRef Google Scholar

    [102] Haske W, Chen V W, Hales J M, et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography[J]. Opt Express, 2007, 15(6): 3426−3436. doi: 10.1364/OE.15.003426

    CrossRef Google Scholar

    [103] Dong X Z, Zhao Z S, Duan X M. Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication[J]. Appl Phys Lett, 2008, 92(9): 091113. doi: 10.1063/1.2841042

    CrossRef Google Scholar

    [104] Juodkazis S, Mizeikis V, Seet K K, et al. Two-photon lithography of nanorods in SU-8 photoresist[J]. Nanotechnology, 2005, 16(6): 846−849. doi: 10.1088/0957-4484/16/6/039

    CrossRef Google Scholar

    [105] Tan D F, Li Y, Qi F J, et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Appl Phys Lett, 2007, 90(7): 071106. doi: 10.1063/1.2535504

    CrossRef Google Scholar

    [106] Jin F, Liu J, Zhao Y Y, et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nat Commun, 2022, 13(1): 1357. doi: 10.1038/s41467-022-29036-7

    CrossRef Google Scholar

    [107] Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited][J]. Opt Mater Express, 2011, 1(4): 614−624. doi: 10.1364/OME.1.000614

    CrossRef Google Scholar

    [108] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser Photonics Rev, 2013, 7(1): 22−44. doi: 10.1002/lpor.201100046

    CrossRef Google Scholar

    [109] 曹耀宇, 谢飞, 张鹏达, 等. 双光束超分辨激光直写纳米加工技术[J]. 光电工程, 2017, 44(12): 1133−1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electron Eng, 2017, 44(12): 1133−1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    [110] Li L J, Gattass R R, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910−913. doi: 10.1126/science.1168996

    CrossRef Google Scholar

    [111] Fischer J, Von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Adv Mater, 2010, 22(32): 3578−3582. doi: 10.1002/adma.201000892

    CrossRef Google Scholar

    [112] Wollhofen R, Katzmann J, Hrelescu C, et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Opt Express, 2013, 21(9): 10831−10840. doi: 10.1364/OE.21.010831

    CrossRef Google Scholar

    [113] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nat Commun, 2013, 4(1): 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [114] Park S H, Lee S H, Yang D Y, et al. Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization[J]. Appl Phys Lett, 2005, 87(15): 154108. doi: 10.1063/1.2103393

    CrossRef Google Scholar

    [115] Yang H, Zhao Y Y, Zheng M L, et al. Stepwise optimized 3D printing of arbitrary 3D structures at millimeter scale with high precision surface[J]. Macromol Mater Eng, 2019, 304(11): 1900400. doi: 10.1002/mame.201900400

    CrossRef Google Scholar

    [116] Sun H B, Nakamura A, Shoji S, et al. Three-dimensional nanonetwork assembled in a photopolymerized rod array[J]. Adv Mater, 2003, 15(23): 2011−2014. doi: 10.1002/adma.200305285

    CrossRef Google Scholar

    [117] Kuroiwa Y, Takeshima N, Narita Y, et al. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements[J]. Opt Express, 2004, 12(9): 1908−1915. doi: 10.1364/OPEX.12.001908

    CrossRef Google Scholar

    [118] Kato J I, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Appl Phys Lett, 2005, 86(4): 044102. doi: 10.1063/1.1855404

    CrossRef Google Scholar

    [119] Matsuo S, Juodkazis S, Misawa H. Femtosecond laser microfabrication of periodic structures using a microlens array[J]. Appl Phys A, 2005, 80(4): 683−685. doi: 10.1007/s00339-004-3108-x

    CrossRef Google Scholar

    [120] Dong X Z, Zhao Z S, Duan X M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing[J]. Appl Phys Lett, 2007, 91(12): 124103. doi: 10.1063/1.2789661

    CrossRef Google Scholar

    [121] Ritschdorff E T, Nielson R, Shear J B. Multi-focal multiphoton lithography[J]. Lab Chip, 2012, 12(5): 867−871. doi: 10.1039/c2lc21271d

    CrossRef Google Scholar

    [122] Yan W S, Cumming B P, Gu M. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing[J]. J Opt, 2015, 17(7): 075803. doi: 10.1088/2040-8978/17/7/075803

    CrossRef Google Scholar

    [123] Hahn V, Kiefer P, Frenzel T, et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials[J]. Adv Funct Mater, 2020, 30(26): 1907795. doi: 10.1002/adfm.201907795

    CrossRef Google Scholar

    [124] Lin W, Chen D H, Chen S C. Emerging micro-additive manufacturing technologies enabled by novel optical methods[J]. Photonics Res, 2020, 8(12): 1827−1842. doi: 10.1364/PRJ.404334

    CrossRef Google Scholar

    [125] Geng Q, Wang D E, Chen P F, et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization[J]. Nat Commun, 2019, 10(1): 2179. doi: 10.1038/s41467-019-10249-2

    CrossRef Google Scholar

    [126] Saha S K, Wang D E, Nguyen V H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105−109. doi: 10.1126/science.aax8760

    CrossRef Google Scholar

    [127] Somers P, Liang Z H, Johnson J E, et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses[J]. Light Sci Appl, 2021, 10(1): 199. doi: 10.1038/s41377-021-00645-z

    CrossRef Google Scholar

    [128] Liu Y H, Zhao Y Y, Jin F, et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano Lett, 2021, 21(9): 3915−3921. doi: 10.1021/acs.nanolett.1c00559

    CrossRef Google Scholar

    [129] Duan X M, Sun H B, Kaneko K, et al. Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication[J]. Thin Solid Films, 2004, 453-454: 518−521. doi: 10.1016/j.tsf.2003.11.126

    CrossRef Google Scholar

    [130] Wong S, Deubel M, Pérez-Willard F, et al. Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses[J]. Adv Mater, 2006, 18(3): 265−269. doi: 10.1002/adma.200501973

    CrossRef Google Scholar

    [131] Ledermann A, Cademartiri L, Hermatschweiler M, et al. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths[J]. Nat Mater, 2006, 5(12): 942−945. doi: 10.1038/nmat1786

    CrossRef Google Scholar

    [132] Ya Q, Chen W Q, Dong X Z, et al. Dual photonic band gap and reversible tuning of 3D photonic crystal fabricated by multiphoton polymerization with photoresponsive polymer[J]. Appl Phys A, 2008, 93(2): 393−398. doi: 10.1007/s00339-008-4789-3

    CrossRef Google Scholar

    [133] Dong X Z, Ya Q, Sheng X Z, et al. Photonic bandgap of gradient quasidiamond lattice photonic crystal[J]. Appl Phys Lett, 2008, 92(23): 231103. doi: 10.1063/1.2943278

    CrossRef Google Scholar

    [134] Liu Y J, Wang H, Ho J, et al. Structural color three-dimensional printing by shrinking photonic crystals[J]. Nat Commun, 2019, 10(1): 4340. doi: 10.1038/s41467-019-12360-w

    CrossRef Google Scholar

    [135] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513−1515. doi: 10.1126/science.1177031

    CrossRef Google Scholar

    [136] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337−339. doi: 10.1126/science.1186351

    CrossRef Google Scholar

    [137] Digaum J L, Pazos J J, Chiles J, et al. Tight control of light beams in photonic crystals with spatially-variant lattice orientation[J]. Opt Express, 2014, 22(21): 25788−25804. doi: 10.1364/OE.22.025788

    CrossRef Google Scholar

    [138] Turner M D, Schröder-Turk G E, Gu M. Fabrication and characterization of three-dimensional biomimetic chiral composites[J]. Opt Express, 2011, 19(10): 10001−10008. doi: 10.1364/OE.19.010001

    CrossRef Google Scholar

    [139] Turner M D, Saba M, Zhang Q M, et al. Miniature chiral beamsplitter based on gyroid photonic crystals[J]. Nat Photonics, 2013, 7(10): 801−805. doi: 10.1038/nphoton.2013.233

    CrossRef Google Scholar

    [140] Li H L, Lee W B, Zhou C Y, et al. Flat retroreflector based on a metasurface doublet enabling reliable and angle-tolerant free-space optical link[J]. Adv Opt Mater, 2021, 9(21): 2100796. doi: 10.1002/adom.202100796

    CrossRef Google Scholar

    [141] Balli F, Sultan M, Lami S K, et al. A hybrid achromatic metalens[J]. Nat Commun, 2020, 11(1): 3892. doi: 10.1038/s41467-020-17646-y

    CrossRef Google Scholar

    [142] Balli F, Sultan M A, Ozdemir A, et al. An ultrabroadband 3D achromatic metalens[J]. Nanophotonics, 2021, 10(4): 1259−1264. doi: 10.1515/nanoph-2020-0550

    CrossRef Google Scholar

    [143] McLamb M, Li Y Z, Stinson P, et al. Metasurfaces for the infrared spectral range fabricated using two-photon polymerization[J]. Thin Solid Films, 2021, 721: 138548. doi: 10.1016/j.tsf.2021.138548

    CrossRef Google Scholar

    [144] Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nat Commun, 2016, 7(1): 13682. doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [145] Hu Z Y, Jiang T, Tian Z N, et al. Broad-bandwidth micro-diffractive optical elements[J]. Laser Photonics Rev, 2022, 16(3): 2100537. doi: 10.1002/lpor.202100537

    CrossRef Google Scholar

    [146] Balli F. Optical metasurfaces[D]. Lexington: University of Kentucky, 2021.

    Google Scholar

    [147] Sultan M A, Balli F, Lau D L, et al. Hybrid metasurfaces for simultaneous focusing and filtering[J]. Opt Lett, 2021, 46(2): 214−217. doi: 10.1364/OL.410080

    CrossRef Google Scholar

    [148] Safronov K R, Bessonov V O, Akhremenkov D V, et al. Miniature otto prism coupler for integrated photonics[J]. Laser Photonics Rev, 2022, 16(4): 2100542. doi: 10.1002/lpor.202100542

    CrossRef Google Scholar

    [149] Gehring H, Blaicher M, Hartmann W, et al. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth[J]. APL Photonics, 2019, 4(1): 010801. doi: 10.1063/1.5064401

    CrossRef Google Scholar

    [150] Hou Z S, Xiong X, Cao J J, et al. On-chip polarization rotators[J]. Adv Opt Mater, 2019, 7(10): 1900129. doi: 10.1002/adom.201900129

    CrossRef Google Scholar

    [151] Blaicher M, Billah M R, Kemal J, et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography[J]. Light Sci Appl, 2020, 9(1): 71. doi: 10.1038/s41377-020-0272-5

    CrossRef Google Scholar

    [152] Schumann M, Bückmann T, Gruhler N, et al. Hybrid 2D–3D optical devices for integrated optics by direct laser writing[J]. Light Sci Appl, 2014, 3(6): e175. doi: 10.1038/lsa.2014.56

    CrossRef Google Scholar

    [153] Lindenmann N, Balthasar G, Hillerkuss D, et al. Photonic wire bonding: a novel concept for chip-scale interconnects[J]. Opt Express, 2012, 20(16): 17667−17677. doi: 10.1364/OE.20.017667

    CrossRef Google Scholar

    [154] Nocentini S, Riboli F, Burresi M, et al. Three-dimensional photonic circuits in rigid and soft polymers tunable by light[J]. ACS Photonics, 2018, 5(8): 3222−3230. doi: 10.1021/acsphotonics.8b00461

    CrossRef Google Scholar

    [155] Bekenstein R, Kabessa Y, Sharabi Y, et al. Control of light by curved space in nanophotonic structures[J]. Nat Photonics, 2017, 11(10): 664−670. doi: 10.1038/s41566-017-0008-0

    CrossRef Google Scholar

    [156] Keum D, Jang K W, Jeon D S, et al. Xenos peckii vision inspires an ultrathin digital camera[J]. Light Sci Appl, 2018, 7(1): 80. doi: 10.1038/s41377-018-0081-2

    CrossRef Google Scholar

    [157] Gissibl T, Thiele S, Herkommer A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nat Photonics, 2016, 10(8): 554−560. doi: 10.1038/nphoton.2016.121

    CrossRef Google Scholar

    [158] Bogucki A, Zinkiewicz Ł, Grzeszczyk M, et al. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses[J]. Light Sci Appl, 2020, 9(1): 48. doi: 10.1038/s41377-020-0284-1

    CrossRef Google Scholar

    [159] Thiele S, Arzenbacher K, Gissibl T, et al. 3D-printed eagle eye: compound microlens system for foveated imaging[J]. Sci Adv, 2017, 3(2): e1602655. doi: 10.1126/sciadv.1602655

    CrossRef Google Scholar

    [160] Thiele S, Pruss C, Herkommer A M, et al. 3D printed stacked diffractive microlenses[J]. Opt Express, 2019, 27(24): 35621−35630. doi: 10.1364/OE.27.035621

    CrossRef Google Scholar

    [161] Zhao Y Y, Zhang Y L, Zheng M L, et al. Three-dimensional Luneburg lens at optical frequencies[J]. Laser Photonics Rev, 2016, 10(4): 665−672. doi: 10.1002/lpor.201600051

    CrossRef Google Scholar

    [162] Xia C, Gutierrez J J, Kuebler S M, et al. Cylindrical-lens-embedded photonic crystal based on self-collimation[J]. Opt Express, 2022, 30(6): 9165−9180. doi: 10.1364/OE.452467

    CrossRef Google Scholar

    [163] Wei H M, Callewaert F, Hadibrata W, et al. Two-photon direct laser writing of inverse-designed free-form near-infrared polarization beamsplitter[J]. Adv Opt Mater, 2019, 7(21): 1900513. doi: 10.1002/adom.201900513

    CrossRef Google Scholar

    [164] Camayd-Muñoz P, Faraon A. Scaling laws for inverse-designed metadevices[C]//CLEO: QELS_Fundamental Science 2018, 2018: FF3C. 7.

    Google Scholar

    [165] Hadibrata W, Wei H M, Krishnaswamy S, et al. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography[J]. Nano Lett, 2021, 21(6): 2422−2428. doi: 10.1021/acs.nanolett.0c04463

    CrossRef Google Scholar

    [166] Roques-Carmes C, Lin Z, Christiansen R E, et al. Toward 3D-printed inverse-designed metaoptics[J]. ACS Photonics, 2022, 9(1): 43−51. doi: 10.1021/acsphotonics.1c01442

    CrossRef Google Scholar

    [167] Surjadi J U, Gao L B, Du H F, et al. Mechanical metamaterials and their engineering applications[J]. Adv Eng Mater, 2019, 21(3): 1800864. doi: 10.1002/adem.201800864

    CrossRef Google Scholar

    [168] Kadic M, Bückmann T, Stenger N, et al. On the practicability of pentamode mechanical metamaterials[J]. Appl Phys Lett, 2012, 100(19): 191901. doi: 10.1063/1.4709436

    CrossRef Google Scholar

    [169] Kadic M, Bückmann T, Schittny R, et al. Pentamode metamaterials with independently tailored bulk modulus and mass density[J]. Phys Rev Appl, 2014, 2(5): 054007. doi: 10.1103/PhysRevApplied.2.054007

    CrossRef Google Scholar

    [170] Bückmann T, Thiel M, Kadic M, et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nat Commun, 2014, 5(1): 4130. doi: 10.1038/ncomms5130

    CrossRef Google Scholar

    [171] Frenzel T, Kadic M, Wegener M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366): 1072−1074. doi: 10.1126/science.aao4640

    CrossRef Google Scholar

    [172] Williams G, Hunt M, Boehm B, et al. Two-photon lithography for 3D magnetic nanostructure fabrication[J]. Nano Res, 2018, 11(2): 845−854. doi: 10.1007/s12274-017-1694-0

    CrossRef Google Scholar

    [173] Lao Z X, Xia N, Wang S J, et al. Tethered and untethered 3D microactuators fabricated by two-photon polymerization: a review[J]. Micromachines, 2021, 12(4): 465. doi: 10.3390/mi12040465

    CrossRef Google Scholar

    [174] He Z Q, Tan G J, Chanda D, et al. Novel liquid crystal photonic devices enabled by two-photon polymerization [Invited][J]. Opt Express, 2019, 27(8): 11472−11491. doi: 10.1364/OE.27.011472

    CrossRef Google Scholar

    [175] Zheng C L, Jin F, Zhao Y Y, et al. Light-driven micron-scale 3D hydrogel actuator produced by two-photon polymerization microfabrication[J]. Sensor Actuat B Chem, 2020, 304: 127345. doi: 10.1016/j.snb.2019.127345

    CrossRef Google Scholar

    [176] Xia H, Wang J, Tian Y, et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Adv Mater, 2010, 22(29): 3204−3207. doi: 10.1002/adma.201000542

    CrossRef Google Scholar

    [177] Wang W K, Sun Z B, Zheng M L, et al. Magnetic nickel–phosphorus/polymer composite and remotely driven three-dimensional micromachine fabricated by nanoplating and two-photon polymerization[J]. J Phys Chem C, 2011, 115(22): 11275−11281. doi: 10.1021/jp202644d

    CrossRef Google Scholar

    [178] Tottori S, Zhang L, Qiu F M, et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[J]. Adv Mater, 2012, 24(6): 811−816. doi: 10.1002/adma.201103818

    CrossRef Google Scholar

    [179] Ma Z C, Zhang Y L, Han B, et al. Femtosecond laser programmed artificial musculoskeletal systems[J]. Nat Commun, 2020, 11(1): 4536. doi: 10.1038/s41467-020-18117-0

    CrossRef Google Scholar

    [180] Zeng H, Wasylczyk P, Parmeggiani C, et al. Light-fueled microscopic walkers[J]. Adv Mater, 2015, 27(26): 3883−3887. doi: 10.1002/adma.201501446

    CrossRef Google Scholar

    [181] Lin X F, Hu G Q, Chen Q D, et al. A light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiency[J]. Appl Phys Lett, 2012, 101(11): 113901. doi: 10.1063/1.4751464

    CrossRef Google Scholar

    [182] Ikegami T, Ozawa R, Stocker M P, et al. Development of optically-driven metallic microrotors using two-photon microfabrication[J]. J Laser Micro Nanoen, 2013, 8(1): 6−10. doi: 10.2961/jlmn.2013.01.0002

    CrossRef Google Scholar

    [183] Zhou W H, Kuebler S M, Braun K L, et al. An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication[J]. Science, 2002, 296(5570): 1106−1109. doi: 10.1126/science.296.5570.1106

    CrossRef Google Scholar

    [184] Baldacchini T. Three-Dimensional Microfabrication Using Two-Photon Polymerization[M]. 2nd ed. Oxford: William Andrew, 2019.

    Google Scholar

    [185] Maruo S, Inoue H. Optically driven micropump produced by three-dimensional two-photon microfabrication[J]. Appl Phys Lett, 2006, 89(14): 144101. doi: 10.1063/1.2358820

    CrossRef Google Scholar

    [186] Maruo S, Takaura A, Saito Y. Optically driven micropump with a twin spiral microrotor[J]. Opt Express, 2009, 17(21): 18525−18532. doi: 10.1364/OE.17.018525

    CrossRef Google Scholar

    [187] Wang J, He Y, Xia H, et al. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization[J]. Lab Chip, 2010, 10(15): 1993−1996. doi: 10.1039/c003264f

    CrossRef Google Scholar

    [188] Amato L, Gu Y, Bellini N, et al. Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip[J]. Lab Chip, 2012, 12(6): 1135−1142. doi: 10.1039/c2lc21116e

    CrossRef Google Scholar

    [189] Wu D, Chen Q D, Niu L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab Chip, 2009, 9(16): 2391−2394. doi: 10.1039/b902159k

    CrossRef Google Scholar

    [190] Lim T W, Son Y, Jeong Y J, et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length[J]. Lab Chip, 2011, 11(1): 100−103. doi: 10.1039/C005325M

    CrossRef Google Scholar

    [191] Wu D, Wu S Z, Xu J, et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip[J]. Laser Photonics Rev, 2014, 8(3): 458−467. doi: 10.1002/lpor.201400005

    CrossRef Google Scholar

    [192] He Y, Huang B L, Lu D X, et al. “Overpass” at the junction of a crossed microchannel: An enabler for 3D microfluidic chips[J]. Lab Chip, 2012, 12(20): 3866−3869. doi: 10.1039/c2lc40401j

    CrossRef Google Scholar

    [193] Hahn V, Messer T, Bojanowski N M, et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting[J]. Nat Photonics, 2021, 15(12): 932−938. doi: 10.1038/s41566-021-00906-8

    CrossRef Google Scholar

    [194] Ueno K, Juodkazis S, Shibuya T, et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source[J]. J Am Chem Soc, 2008, 130(22): 6928−6929. doi: 10.1021/ja801262r

    CrossRef Google Scholar

    [195] Thiel M, Fischer J, Von Freymann G, et al. Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm[J]. Appl Phys Lett, 2010, 97(22): 221102. doi: 10.1063/1.3521464

    CrossRef Google Scholar

    [196] Mueller P, Thiel M, Wegener M. 3D direct laser writing using a 405 nm diode laser[J]. Opt Lett, 2014, 39(24): 6847−6850. doi: 10.1364/OL.39.006847

    CrossRef Google Scholar

    [197] Yu H Y, Ding H B, Zhang Q M, et al. Three-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beam[J]. Light Adv Manuf, 2021, 2(1): 31−38. doi: 10.37188/lam.2021.003

    CrossRef Google Scholar

    [198] Gräfe D, Wickberg A, Zieger M M, et al. Adding chemically selective subtraction to multi-material 3D additive manufacturing[J]. Nat Commun, 2018, 9(1): 2788. doi: 10.1038/s41467-018-05234-0

    CrossRef Google Scholar

    [199] Fang G, Cao H Z, Cao L C, et al. Femtosecond laser direct writing of 3D silica-like microstructure from hybrid epoxy cyclohexyl POSS[J]. Adv Mater Technol, 2018, 3(3): 1700271. doi: 10.1002/admt.201700271

    CrossRef Google Scholar

    [200] Hirt L, Reiser A, Spolenak R, et al. Additive manufacturing of metal structures at the micrometer scale[J]. Adv Mater, 2017, 29(17): 1604211. doi: 10.1002/adma.201604211

    CrossRef Google Scholar

    [201] Ma Z C, Zhang Y L, Han B, et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications[J]. Small Methods, 2018, 2(7): 1700413. doi: 10.1002/smtd.201700413

    CrossRef Google Scholar

    [202] Cao Y Y, Takeyasu N, Tanaka T, et al. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction[J]. Small, 2009, 5(10): 1144−1148. doi: 10.1002/smll.200801179

    CrossRef Google Scholar

    [203] Zhao Y Y, Ren X L, Zheng M L, et al. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes[J]. Opto-Electron Adv, 2021, 4(12): 200101. doi: 10.29026/oea.2021.200101

    CrossRef Google Scholar

    [204] 周伟平, 白石, 谢祖武, 等. 激光直写制备金属与碳材料微纳结构与器件研究进展[J]. 光电工程, 2022, 49(1): 210330. doi: 10.12086/oee.2022.210330

    CrossRef Google Scholar

    Zhou W P, Bai S, Xie Z W, et al. Research progress of laser direct writing fabrication of metal and carbon micro/nano structures and devices[J]. Opto-Electron Eng, 2022, 49(1): 210330. doi: 10.12086/oee.2022.210330

    CrossRef Google Scholar

    [205] Merkininkaitė G, Aleksandravičius E, Malinauskas M, et al. Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures[J]. Opto-Electron Adv, 2022, 5(5): 210077. doi: 10.29026/oea.2022.210077

    CrossRef Google Scholar

    [206] Li Y, Chen L W, Kong F, et al. Functional micro-concrete 3D hybrid structures fabricated by two-photon polymerization[J]. Opto-Electron Eng, 2017, 44(4): 393−399.

    Google Scholar

    [207] Kotz F, Quick A S, Risch P, et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures[J]. Adv Mater, 2021, 33(9): 2006341. doi: 10.1002/adma.202006341

    CrossRef Google Scholar

    [208] Doualle T, André J C, Gallais L. 3D printing of silica glass through a multiphoton polymerization process[J]. Opt Lett, 2021, 46(2): 364−367. doi: 10.1364/OL.414848

    CrossRef Google Scholar

    [209] Wen X W, Zhang B Y, Wang W P, et al. 3D-printed silica with nanoscale resolution[J]. Nat Mater, 2021, 20(11): 1506−1511. doi: 10.1038/s41563-021-01111-2

    CrossRef Google Scholar

    [210] Ocier C R, Richards C A, Bacon-Brown D A, et al. Direct laser writing of volumetric gradient index lenses and waveguides[J]. Light Sci Appl, 2020, 9(1): 196. doi: 10.1038/s41377-020-00431-3

    CrossRef Google Scholar

    [211] Dottermusch S, Busko D, Langenhorst M, et al. Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers[J]. Opt Lett, 2019, 44(1): 29−32. doi: 10.1364/OL.44.000029

    CrossRef Google Scholar

  • Femtosecond laser two-photon polymerization (TPP) micro-nanofabrication technology is a new type of three-dimensional lithography technology that integrates nonlinear optics, ultra-fast pulsed laser, microscopic imaging, ultra-high-precision positioning, three-dimensional (3D) graphics CAD modeling, and photochemical materials. It has the characteristics of simplicity, low cost, high resolution, true 3D, and so on. Different from the technical route of shortening the wavelength of the traditional lithography, this TPP technology breaks through the optical diffraction limit using the ultrafast laser in the near-infrared and the nonlinear optical effect of the interaction between the laser and the material. TPP can achieve true 3D fabrication of complex 3D structures. After the femtosecond pulse laser is tightly focused in space, photopolymerization is initiated by the two-photon absorption(TPA), which can limit the fabrication area in the center of the focus. The interaction time of the ultrashort pulse with the material is much lower than the thermal relaxation of the material, avoiding the photothermal effect. The lateral linewidth can be reduced to about 100 nm due to the strong threshold characteristics of the two-photon absorption process. Thus, TPP is an ideal fabrication method in the field of 3D micro-nanostructure. Since 2001, Kawata’s team has used a near-infrared femtosecond laser with a wavelength of 780 nm to fabricate a "nanobull" with the size of red blood cells. It fully demonstrated the advantages of TPP in the preparation of three-dimensional micro-nano structures. At the same time, a polymer nanodot with a size of 120 nm was fabricated, which was only 1/7 of the laser wavelength, breaking the optical diffraction limit in this study. Since then, scientists from various countries have improved the line width, resolution, and other parameters of 3D structure by continuously improving the materials, structure, processing technology and light field control, and other aspects. At the same time, with the continuous development and improvement of the 3D nanostructure fabrication technology, the advantages of TPP technology are also reflected in some application fields, such as micro-optical devices, integrated optical devices, micro-electromechanical systems, and biomedical devices. This paper will systematically introduce the femtosecond laser TPP micro-nanofabrication technology, including the fabricating principle, the development of fabricating methods, and its research overview in many application fields. Finally, its existing problems and future development and application prospects are discussed.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(1)

Article Metrics

Article views(12136) PDF downloads(1668) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint