Yang S H, Ding C L, Zhu D Z, et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electron Eng, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133
Citation: Yang S H, Ding C L, Zhu D Z, et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electron Eng, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133

High-speed two-photon lithography based on femtosecond laser

    Fund Project: National Key Research and Development Program of China (2021YFF0502700), National Natural Science Foundation of China (62205304, 52105565, 62105298), Zhejiang Provincial Natural Science Foundation (LD21F050002), Key Project of Zhejiang Laboratory (2020MC0AE01), Zhejiang Provincial Natural Science Foundation (LQ22F050015, LQ22F050017), and China Postdoctoral Science Foundation (2020M671823).
More Information
  • Two-photon polymerization (TPP) based on femtosecond laser has been a research hotspot in 3D micro/nano writing technology. With the increasing demand for processing complex and large-scale miniaturized 3D devices in the fields of life science, material engineering, micro and nano optics, and etc., the issue of low processing efficiency of TPP is becoming increasingly serious. During the long fabrication period, many disturbances can be introduced in the processing, causing the quality deterioration of the structure and seriously hindering the further popularization and application of these crucial 3D devices. This paper respectively compares the four approaches of single-beam writing, parallel multi-beam writing, pattern projection, and 3D projection exposure based on the TPP lithography efficiency. Moreover, the researches on the optical design of system, the writing accuracy, the fabrication throughput, the writing strategy, and etc. of each approach are also described. And the advantages and disadvantages of these four methods are summerized simultaneously. Finally, we also made a brief prospect to the developing trend of TPL efficiency improvement in the future.
  • 加载中
  • [1] Fang L M, Qiao Z, Zhang J, et al. Study on micromachining of femtosecond laser biomedical polymer materials[J]. Key Eng Mater, 2020, 852: 109−118. doi: 10.4028/www.scientific.net/KEM.852.109

    CrossRef Google Scholar

    [2] Huang R T, Knox W H. Quantitative photochemical scaling model for femtosecond laser micromachining of ophthalmic hydrogel polymers: effect of repetition rate and laser power in the four photon absorption limit[J]. Opt Mater Express, 2019, 9(3): 1049−1061. doi: 10.1364/OME.9.001049

    CrossRef Google Scholar

    [3] Balbus G H, Echlin M P, Grigorian C M, et al. Femtosecond laser rejuvenation of nanocrystalline metals[J]. Acta Mater, 2018, 156: 183−195. doi: 10.1016/j.actamat.2018.06.027

    CrossRef Google Scholar

    [4] Kudryashov S I, Levchenko A O, Danilov P A, et al. Direct femtosecond-laser writing of optical-range nanoscale metagratings/metacouplers on diamond surfaces[J]. Appl Phys Lett, 2019, 115(7): 073102. doi: 10.1063/1.5114630

    CrossRef Google Scholar

    [5] Li W J, Zheng J Q, Zhang Y P, et al. Temperature and depth evaluation of the in vitro effects of femtosecond laser on oral soft tissue, with or without air-cooling[J]. Lasers Med Sci, 2019, 34(4): 649−658. doi: 10.1007/s10103-018-2634-2

    CrossRef Google Scholar

    [6] Wang L, Chen Q D, Cao X W, et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light Sci Appl, 2017, 6(12): e17112. doi: 10.1038/lsa.2017.112

    CrossRef Google Scholar

    [7] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro-and nanofabrication[J]. J Appl Phys, 2014, 1(4): 041303. doi: 10.1063/1.4904320

    CrossRef Google Scholar

    [8] Baldacchini T. Three-Dimensional Microfabrication Using Two-Photon Polymerization[M]. 2nd ed. Norwich: William Andrew, 2020.

    Google Scholar

    [9] Ahmmed K M T, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 2014, 5(4): 1219−1253. doi: 10.3390/mi5041219

    CrossRef Google Scholar

    [10] Maruo S, Nakamura O, Kawata K. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Opt Lett, 1997, 22(2): 132−134. doi: 10.1364/ol.22.000132

    CrossRef Google Scholar

    [11] Blaicher M, Billah M R, Kemal J, et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography[J]. Light Sci Appl, 2020, 9(1): 71. doi: 10.1038/s41377-020-0272-5

    CrossRef Google Scholar

    [12] Rhee H W, Shim J, Kim J Y, et al. Direct optical wire bonding through open-to-air polymerization for silicon photonic chips[J]. Opt Lett, 2022, 47(3): 714−717. doi: 10.1364/OL.445526

    CrossRef Google Scholar

    [13] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [14] Agrawal L, Saidani M, Guillaud L, et al. Development of 3D culture scaffolds for directional neuronal growth using 2-photon lithography[J]. Mater Sci Eng C, 2021, 131: 112502. doi: 10.1016/j.msec.2021.112502

    CrossRef Google Scholar

    [15] Jayne R K, Karakan M Ç, Zhang K H, et al. Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers[J]. Lab Chip, 2021, 21(9): 1724−1737. doi: 10.1039/D0LC01078B

    CrossRef Google Scholar

    [16] Sanli U T, Messer T, Weigand M, et al. High-resolution kinoform X-ray optics printed via 405 nm 3D laser lithography[J]. Adv Mater Technol, 2022,doi: 10.1002/admt.202101695.

    Google Scholar

    [17] Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Adv Mater, 2010, 22(32): 3578−3582. doi: 10.1002/adma.201000892

    CrossRef Google Scholar

    [18] Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited][J]. Opt Mater Express, 2011, 1(4): 614−624. doi: 10.1364/OME.1.000614

    CrossRef Google Scholar

    [19] Müller P, Müller R, Hammer L, et al. STED-inspired laser lithography based on photoswitchable spirothiopyran moieties[J]. Chem Mater, 2019, 31(6): 1966−1972. doi: 10.1021/acs.chemmater.8b04696

    CrossRef Google Scholar

    [20] Sankaranarayanan J, Muthukrishnan S, Gudmundsdottir A D. Photoremovable protecting groups based on photoenolization[J]. Adv Phys Org Chem, 2009, 43: 39−77. doi: 10.1016/S0065-3160(08)00002-6

    CrossRef Google Scholar

    [21] Cao C, Liu J T, Xia X M, et al. Click chemistry assisted organic-inorganic hybrid photoresist for ultra-fast two-photon lithography[J]. Addit Manuf, 2022, 51: 102658. doi: 10.1016/j.addma.2022.102658

    CrossRef Google Scholar

    [22] 曹春, 邱毅伟, 刘建亭, 等. 聚乙烯吡咯烷酮杂化双色光敏激光直写光刻胶研究[J]. 高分子学报, 2022, 53(6): 608−616. doi: 10.11777/j.issn1000-3304.2021.21323

    CrossRef Google Scholar

    Cao C, Qiu Y W, Liu J T, et al. Polyvinylpyrrolidone hybrid photoresist for two-color sensitive direct laser writing[J]. Acta Polym Sin, 2022, 53(6): 608−616. doi: 10.11777/j.issn1000-3304.2021.21323

    CrossRef Google Scholar

    [23] Mueller P, Zieger M M, Richter B, et al. Molecular switch for sub-diffraction laser lithography by photoenol intermediate-state Cis-trans isomerization[J]. ACS Nano, 2017, 11(6): 6396−6403. doi: 10.1021/acsnano.7b02820

    CrossRef Google Scholar

    [24] Netto-Ferreira J C, Scaiano J C. A laser flash photolysis study of the mechanism of the photocyclization of ɑ-chloro-o-methylacetophenones[J]. J Am Chem Soc, 1991, 113(15): 5800−5803. doi: 10.1021/ja00015a038

    CrossRef Google Scholar

    [25] Gruendling T, Oehlenschlaeger K K, Frick E, et al. Rapid UV light-triggered macromolecular click conjugations via the use of o-quinodimethanes[J]. Macromol Rapid Commun, 2011, 32(11): 807−812. doi: 10.1002/marc.201100159

    CrossRef Google Scholar

    [26] Kathan M, Hecht S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum[J]. Chem Soc Rev, 2017, 46(18): 5536−5550. doi: 10.1039/C7CS00112F

    CrossRef Google Scholar

    [27] Bertrand O, Gohy J F. Photo-responsive polymers: synthesis and applications[J]. Polym Chem, 2017, 8(1): 52−73. doi: 10.1039/C6PY01082B

    CrossRef Google Scholar

    [28] Ding C L, Zhu D Z, Wei Z, et al. A compact and high-precision method for active beam stabilization system[J]. Opt Commun, 2021, 500: 127328. doi: 10.1016/j.optcom.2021.127328

    CrossRef Google Scholar

    [29] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780−782. doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [30] Saha S K, Wang D E, Nguyen V H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105−109. doi: 10.1126/science.aax8760

    CrossRef Google Scholar

    [31] Pawlicki M, Collins H A, Denning R G, et al. Two-photon absorption and the design of two-photon dyes[J]. Angew Chem Int Ed, 2009, 48(18): 3244−3266. doi: 10.1002/anie.200805257

    CrossRef Google Scholar

    [32] Gu J, Yulan W, Chen W Q, et al. Carbazole-based 1D and 2D hemicyanines: synthesis, two-photon absorption properties and application for two-photon photopolymerization 3D lithography[J]. New J Chem, 2007, 31(1): 63−68. doi: 10.1039/B609309D

    CrossRef Google Scholar

    [33] Xing J F, Chen W Q, Gu J, et al. Design of high efficiency for two-photon polymerization initiator: combination of radical stabilization and large two-photon cross-section achieved by N-benzyl 3, 6-bis (phenylethynyl) carbazole derivatives[J]. J Mater Chem, 2007, 17(14): 1433−1438. doi: 10.1039/b616792f

    CrossRef Google Scholar

    [34] Cao X B, Jin F, Li Y F, et al. Triphenylamine-modified quinoxaline derivatives as two-photon photoinitiators[J]. New J Chem, 2009, 33(7): 1578−1582. doi: 10.1039/b900464e

    CrossRef Google Scholar

    [35] Holzer B, Lunzer M, Rosspeintner A, et al. Towards efficient initiators for two-photon induced polymerization: fine tuning of the donor/acceptor properties[J]. Mol Syst Des Eng, 2019, 4(2): 437−448. doi: 10.1039/c8me00101d

    CrossRef Google Scholar

    [36] Chi T, Somers P, Wilcox D A, et al. Tailored thioxanthone-based photoinitiators for two-photon-controllable polymerization and nanolithographic printing[J]. J Polym Sci Part B Polym Phys, 2019, 57(21): 1462−1475. doi: 10.1002/polb.24891

    CrossRef Google Scholar

    [37] Hu P, Qiu W W, Naumov S, et al. Conjugated bifunctional carbazole-based oxime esters: efficient and versatile photoinitiators for 3D printing under one-and two-photon excitation[J]. Chem Photo Chem, 2020, 4(3): 224−232. doi: 10.1002/cptc.201900246

    CrossRef Google Scholar

    [38] Li Z Q, Pucher N, Cicha K, et al. A straightforward synthesis and structure-activity relationship of highly efficient initiators for two-photon polymerization[J]. Macromolecules, 2013, 46(2): 352−361. doi: 10.1021/ma301770a

    CrossRef Google Scholar

    [39] He M F, Zhang Z M, Cao C, et al. 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry[J]. Laser Photonics Rev, 2022, 16(2): 2100229. doi: 10.1002/LPOR.202100229

    CrossRef Google Scholar

    [40] Chen S, Zheng M L, Dong X Z, et al. Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pump-probe technique[J]. J Opt Soc Am B, 2013, 30(12): 3117−3122. doi: 10.1364/JOSAB.30.003117

    CrossRef Google Scholar

    [41] Chen S, Zheng Y C, Zheng M L, et al. Nondegenerate two-photon absorption properties of a newly synthesized carbazole derivative[J]. J Mater Chem C, 2017, 5(2): 470−475. doi: 10.1039/C6TC04676B

    CrossRef Google Scholar

    [42] Yoo H W, Ito S, Schitter G. High speed laser scanning microscopy by iterative learning control of a galvanometer scanner[J]. Control Eng Pract, 2016, 50: 12−21. doi: 10.1016/j.conengprac.2016.02.007

    CrossRef Google Scholar

    [43] 唐建波. 基于光束扫描的共焦显微三维测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    Google Scholar

    Tang J B. Three dimensional confocal imaging based on beam scanning technology[D]. Harbin: Harbin Institute of Technology, 2011.

    Google Scholar

    [44] De Loor R. Polygon scanner system for ultra short pulsed laser micro-machining applications[J]. Phys Procedia, 2013, 41: 544−551. doi: 10.1016/j.phpro.2013.03.114

    CrossRef Google Scholar

    [45] Schille J, Schneider L, Streek A, et al. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner[J]. Opt Eng, 2016, 55(9): 096109. doi: 10.1117/1.OE.55.9.096109

    CrossRef Google Scholar

    [46] Iyer V, Hoogland T M, Saggau P. Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy[J]. J Neurophysiol, 2006, 95(1): 535−545. doi: 10.1152/jn.00865.2005

    CrossRef Google Scholar

    [47] Grewe B F, Langer D, Kasper H, et al. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision[J]. Nat Methods, 2010, 7(5): 399−405. doi: 10.1038/nmeth.1453

    CrossRef Google Scholar

    [48] Lechleiter J D, Lin D T, Sieneart I. Multi-photon laser scanning microscopy using an acoustic optical deflector[J]. Biophys J, 2002, 83(4): 2292−2299. doi: 10.1016/S0006-3495(02)73989-1

    CrossRef Google Scholar

    [49] Roorda R D, Hohl T M, Toledo-Crow R, et al. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes[J]. J Neurophysiol, 2004, 92(1): 609−621. doi: 10.1152/jn.00087.2004

    CrossRef Google Scholar

    [50] Iyer V, Losavio B E, Saggau P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy[J]. J Biomed Opt, 2003, 8(3): 460−471. doi: 10.1117/1.1580827

    CrossRef Google Scholar

    [51] Salomé R, Kremer Y, Dieudonné S, et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors[J]. J Neurosci Methods, 2006, 154(1–2): 161−174. doi: 10.1016/j.jneumeth.2005.12.010

    CrossRef Google Scholar

    [52] Kirkpatrick S M, Baur J W, Clark C M, et al. Holographic recording using two-photon-induced photopolymerization[J]. Appl Phys A, 1999, 69(4): 461−464. doi: 10.1007/s003390051033

    CrossRef Google Scholar

    [53] Matsuo S, Kondo T, Juodkazis S, et al. Fabrication of three-dimensional photonic crystals by femtosecond laser interference[J]. Proc SPIE, 2002, 4655: 327−334. doi: 10.1117/12.463891

    CrossRef Google Scholar

    [54] Kondo T, Matsuo S, Juodkazis S, et al. Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses[J]. Appl Phys Lett, 2003, 82(17): 2758−2760. doi: 10.1063/1.1569987

    CrossRef Google Scholar

    [55] Kondo T, Juodkazis S, Mizeikis V, et al. Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography[J]. New J Phys, 2006, 8(10): 250. doi: 10.1088/1367-2630/8/10/250

    CrossRef Google Scholar

    [56] Stankevičius E, Malinauskas M, Gedvilas M, et al. Fabrication of periodic micro-structures by multi-photon polymerization using the femtosecond laser and four-beam interference[J]. Mater Sci, 2011, 17(3): 244−248. doi: 10.5755/j01.ms.17.3.587

    CrossRef Google Scholar

    [57] Girsault A, Meller A. Sub-second, super-resolved imaging of biological systems using parallel EO-STED[J]. Opt Lett, 2020, 45(10): 2712−2715. doi: 10.1364/OL.392822

    CrossRef Google Scholar

    [58] Bergermann F, Alber L, Sahl S J, et al. 2000-fold parallelized dual-color STED fluorescence nanoscopy[J]. Opt Express, 2015, 23(1): 211−223. doi: 10.1364/OE.23.000211

    CrossRef Google Scholar

    [59] Yang B, Fang C Y, Chang H C, et al. Polarization effects in lattice-STED microscopy[J]. Faraday Discuss, 2015, 184: 37−49. doi: 10.1039/c5fd00092k

    CrossRef Google Scholar

    [60] Li D, Shao L, Chen B C, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 2015, 349(6251): 527. doi: 10.1126/science.aab3500

    CrossRef Google Scholar

    [61] Förster R, Lu-Walther H W, Jost A, et al. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator[J]. Opt Express, 2014, 22(17): 20663−20677. doi: 10.1364/OE.22.020663

    CrossRef Google Scholar

    [62] Chmyrov A, Keller J, Grotjohann T, et al. Nanoscopy with more than 100, 000 'doughnuts'[J]. Nat Methods, 2013, 10(8): 737−740. doi: 10.1038/nmeth.2556

    CrossRef Google Scholar

    [63] Tang M, Chen Z C, Huang Z Q, et al. Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication[J]. Appl Opt, 2011, 50(35): 6536−6542. doi: 10.1364/AO.50.006536

    CrossRef Google Scholar

    [64] Matsuo S, Juodkazis S, Misawa H. Femtosecond laser microfabrication of periodic structures using a microlens array[J]. Appl Phys A, 2005, 80(4): 683−685. doi: 10.1007/s00339-004-3108-x

    CrossRef Google Scholar

    [65] Kato J I, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Appl Phys Lett, 2005, 86(4): 044102. doi: 10.1063/1.1855404

    CrossRef Google Scholar

    [66] Formanek F, Takeyasu N, Tanaka T, et al. Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization[J]. Opt Express, 2006, 14(2): 800−809. doi: 10.1364/OPEX.14.000800

    CrossRef Google Scholar

    [67] Račiukaitis G, Stankevičius E, Gečys P, et al. Laser processing by using diffractive optical laser beam shaping technique[J]. JLMN-J Laser Micro/Nanoeng, 2011, 6(1): 37−43. doi: 10.2961/jlmn.2011.01.0009

    CrossRef Google Scholar

    [68] Hilton P A, Lloyd D, Tyrer J R. Use of a diffractive optic for high power laser cutting[J]. J Laser Appl, 2016, 28(1): 012014. doi: 10.2351/1.4938279

    CrossRef Google Scholar

    [69] Kuchmizhak A A, Porfirev A P, Syubaev S A, et al. Multi-beam pulsed-laser patterning of plasmonic films using broadband diffractive optical elements[J]. Opt Lett, 2017, 42(14): 2838−2841. doi: 10.1364/OL.42.002838

    CrossRef Google Scholar

    [70] Kwon H H, Yang S H, Cho Y J, et al. Comparison of a 1064-nm neodymium‐doped yttrium aluminum garnet picosecond laser using a diffractive optical element vs. a nonablative 1550-nm erbium-glass laser for the treatment of facial acne scarring in Asian patients: a 17-week prospective, randomized, split-face, controlled trial[J]. J Eur Acad Dermatol Venereol, 2020, 34(12): 2907−2913. doi: 10.1111/jdv.16643

    CrossRef Google Scholar

    [71] Vandenhouten R, Hermerschmidt A, Fiebelkorn R. Design and quality metrics of point patterns for coded structured light illumination with diffractive optical elements in optical 3D sensors[J]. Proc SPIE, 2017, 10335: 1033518. doi: 10.1117/12.2270248

    CrossRef Google Scholar

    [72] Dong X Z, Zhao Z S, Duan X M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing[J]. Appl Phys Lett, 2007, 91(12): 124103. doi: 10.1063/1.2789661

    CrossRef Google Scholar

    [73] Hahn V, Kiefer P, Frenzel T, et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials[J]. Adv Funct Mater, 2020, 30(26): 1907795. doi: 10.1002/adfm.201907795

    CrossRef Google Scholar

    [74] Gittard S D, Nguyen A, Obata K, et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomed Opt Express, 2011, 2(11): 3167−3178. doi: 10.1364/BOE.2.003167

    CrossRef Google Scholar

    [75] Yang L, El-Tamer A, Hinze U, et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator[J]. Opt Lasers Eng, 2015, 70: 26−32. doi: 10.1016/j.optlaseng.2015.02.006

    CrossRef Google Scholar

    [76] Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567−570. doi: 10.1364/OPTICA.2.000567

    CrossRef Google Scholar

    [77] Xu B, Du W Q, Li J W, et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication[J]. Sci Rep, 2016, 6(1): 19989. doi: 10.1038/srep19989

    CrossRef Google Scholar

    [78] Hu Y L, Feng W F, Xue C, et al. Self-assembled micropillars fabricated by holographic femtosecond multi-foci beams for in situ trapping of microparticles[J]. Opt Lett, 2020, 45(17): 4698−4701. doi: 10.1364/OL.398682

    CrossRef Google Scholar

    [79] Geng Q, Wang D E, Chen P F, et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization[J]. Nat Commun, 2019, 10(1): 2179. doi: 10.1038/s41467-019-10249-2

    CrossRef Google Scholar

    [80] Mills B, Grant-Jacob J A, Feinaeugle M, et al. Single-pulse multiphoton polymerization of complex structures using a digital multimirror device[J]. Opt Express, 2013, 21(12): 14853−14858. doi: 10.1364/OE.21.014853

    CrossRef Google Scholar

    [81] Aagedal H, Schmid M, Beth T, et al. Theory of speckles in diffractive optics and its application to beam shaping[J]. J Mod Opt, 1996, 43(7): 1409−1421. doi: 10.1080/09500349608232814

    CrossRef Google Scholar

    [82] Zhang C C, Hu Y L, Li J W, et al. An improved multi-exposure approach for high quality holographic femtosecond laser patterning[J]. Appl Phys Lett, 2014, 105(22): 221104. doi: 10.1063/1.4902925

    CrossRef Google Scholar

    [83] Aharoni T, Shoham S. Phase-controlled, speckle-free holographic projection with applications in precision optogenetics[J]. Neurophotonics, 2018, 5(2): 025004. doi: 10.1117/1.NPh.5.2.025004

    CrossRef Google Scholar

    [84] Wang Z P, Li X W, Jiang L, et al. High-quality micropattern printing by interlacing-pattern holographic femtosecond pulses[J]. Nanophotonics, 2020, 9(9): 2895−2904. doi: 10.1515/nanoph-2020-0138

    CrossRef Google Scholar

    [85] Nomura T, Okamura M, Nitanai E, et al. Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths[J]. Appl Opt, 2008, 47(19): D38−D43. doi: 10.1364/AO.47.000D38

    CrossRef Google Scholar

    [86] Fan H, Cao X W, Wang L, et al. Control of diameter and numerical aperture of microlens by a single ultra-short laser pulse[J]. Opt Lett, 2019, 44(21): 5149−5152. doi: 10.1364/OL.44.005149

    CrossRef Google Scholar

    [87] Yang L, Hu Z J, Xin C, et al. One-step synthesis of three-dimensional microtubes with single exposure of structured femtosecond optical vortices[J]. Proc SPIE, 2018, 10522: 105221H. doi: 10.1117/12.2289043

    CrossRef Google Scholar

    [88] Xin C, Yang L, Li J W, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery[J]. Adv Mater, 2019, 31(25): 1808226. doi: 10.1002/adma.201808226

    CrossRef Google Scholar

    [89] Yang L, Chen X X, Wang L, et al. Targeted single‐cell therapeutics with magnetic tubular micromotor by one‐step exposure of structured femtosecond optical vortices[J]. Adv Funct Mater, 2019, 29(45): 1905745. doi: 10.1002/adfm.201905745

    CrossRef Google Scholar

    [90] Pan D, Liu S L, Li J W, et al. Rapid fabrication of 3D chiral microstructures by single exposure of interfered femtosecond vortex beams and capillary-force-assisted self-assembly[J]. Adv Funct Mater, 2022, 32(4): 2106917. doi: 10.1002/adfm.202106917

    CrossRef Google Scholar

  • Two-photon lithography (TPL) has been a research hotspot in 3D micro/nano writing technology due to its characteristics of high resolution, low thermal influence, a wide range of processed materials, low environmental requirements, and 3D processing capability. It has shown unique advantages in the fields of life science, material engineering, micro/nano optics, microfluidic, micro machinery, and so on. This paper summarizes the research works done by researchers on different writing methods to improve TPL processing efficiency. Single-beam writing is the main method for TPL, which mainly depends on the speed of the scanning device. Single-beam writing has the advantages of simple system and high-quality beam, and it is easy to combine various effects to improve writing results. It mainly includes scanning modes based on the translation stage, galvo, polygon laser scanner, and acousto-optic deflector (AOD) (Fig. 2). All these modes have advantages and disadvantages. As for the scanning speed comparison, polygon laser scanner and AOD have relatively faster writing rates (faster than m/s). Multi-foci parallel lithography can obviously promote efficiency, elevating the speed by dozens or even hundreds of thousands of times, mainly based on spatial light modulator (SLM), digital micromirror device (DMD), microlens array (MLA), diffractive optical elements (DOE), multi-beam interference, and so on (Figs. 3-15). Multi-foci parallel lithography based on SLM is most widely used owing to its high efficiency and ability to flexible and independent control of each single beam, but the refresh rate is still insufficient. DMD has a higher refreshing rate (32 kHz), but the state-of-the-art beam parallelism realized by DMD is severely limited. More parallel beams are further required for improving the processing efficiency. The 2D pattern exposure method based on SLM or DMD can further improve the TPL efficiency with the superiority of generating flexibly designed pattern (Figs. 16-18). However, the 2D projection exposure technology is still difficult to achieve high writing precision, especially the axial resolution. An available method to improve the axial precision is spatially and temporally focusing an ultrafast laser to implement a strong intensity gradient at the spatial focal plane that restricts polymerization within a thin layer. The 3D projection method will be the most efficient writing method in the future, especially in 3D device processing (Figs. 19-20). Researchers used this technique to make hollow tubular and conical helices structures, increasing the processing speed by 600 times. However, the research results show that the current 3D projection can only process simple 3D structures. Further researches on 3D exposure processing of complex structures are expected, which will effectively expand its application in various fields. Authors believe that with the effort of researchers on efficiency improvement gradually, TPL can further highlight its advantages to promote the development of life science, materials engineering, micro-nano optics, and many other fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Article Metrics

Article views(8783) PDF downloads(1198) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint