Luan M L, Zheng J X, Sun X C, et al. Liquid-assisted laser fabrication of hard materials and applications[J]. Opto-Electron Eng, 2023, 50(3): 220328. doi: 10.12086/oee.2023.220328
Citation: Luan M L, Zheng J X, Sun X C, et al. Liquid-assisted laser fabrication of hard materials and applications[J]. Opto-Electron Eng, 2023, 50(3): 220328. doi: 10.12086/oee.2023.220328

Liquid-assisted laser fabrication of hard materials and applications

    Fund Project: the National Natural Science Foundation of China (62105117) and the Scientific Research Project of the Education Department of Jilin Province (JJKH20221005KJ)
More Information
  • Due to the stable mechanical and chemical properties, excellent photoelectric properties, and other advantages, hard and brittle materials have been widely used in aerospace, the photoelectric industry, and other fields. Laser fabrication is an ideal technology for hard and brittle materials processing due to its high precision, high energy, and non-contact properties. In order to achieve the removal of hard and brittle materials, high laser energy is usually required, resulting in low structural accuracy and poor surface quality. This review introduces the advances of liquid-assisted laser fabrication technology in the processing of hard and brittle materials, introduces the principles of three liquid-assisted laser fabrication technologies, and compares their advantages and disadvantages. The effects of different processing technologies, types of auxiliary liquids, and processing parameters on the quality of different materials were summarized in detail. The main applications of liquid-assisted laser fabrication technology were summarized, and the existing problems and potential development of this technology were discussed.
  • 加载中
  • [1] Gao B, Chen T, Khuat V, et al. Fabrication of grating structures on silicon carbide by femtosecond laser irradiation and wet etching[J]. Chin Opt Lett, 2016, 14(2): 021407. doi: 10.3788/COL201614.021407

    CrossRef Google Scholar

    [2] Bharadwaj V, Wang Y C, Fernandez T T, et al. Femtosecond laser written diamond waveguides: a step towards integrated photonics in the far infrared[J]. Opt Mater, 2018, 85: 183−185. doi: 10.1016/j.optmat.2018.08.062

    CrossRef Google Scholar

    [3] Cao J J, Hou Z S, Tian Z N, et al. Bioinspired zoom compound eyes enable variable-focus imaging[J]. ACS Appl Mater Interfaces, 2020, 12(9): 10107−10117. doi: 10.1021/acsami.9b21008

    CrossRef Google Scholar

    [4] Feng S C, Zhang R, Huang C Z, et al. An investigation of recast behavior in laser ablation of 4H-silicon carbide wafer[J]. Mater Sci Semicond Process, 2020, 105: 104701. doi: 10.1016/j.mssp.2019.104701

    CrossRef Google Scholar

    [5] Saini S K, Dubey A K. Study of material characteristics in laser trepan drilling of ZTA[J]. J Manuf Process, 2019, 44: 349−358. doi: 10.1016/j.jmapro.2019.06.017

    CrossRef Google Scholar

    [6] Chang H F, Yeung W K, Kao W C, et al. Surface micromachining on a polymethylmethacrylate substrate using visible laser-induced backside wet etching with a KMnO4 solution as an absorber[J]. J Laser Appl, 2020, 32(2): 022014. doi: 10.2351/1.5114659

    CrossRef Google Scholar

    [7] Feng W H, Guo J, Yan W J, et al. Deep channel fabrication on copper by multi-scan underwater laser machining[J]. Opt Laser Technol, 2019, 111: 653−663. doi: 10.1016/j.optlastec.2018.10.046

    CrossRef Google Scholar

    [8] Kim K, Song M K, Lee S J, et al. Fundamental study on underwater cutting of 50 mm-thick stainless steel plates using a fiber laser for nuclear decommissioning[J]. Appl Sci, 2022, 12(1): 495. doi: 10.3390/app12010495

    CrossRef Google Scholar

    [9] Frias Batista L M, Nag A, Meader V K, et al. Generation of nanomaterials by reactive laser-synthesis in liquid[J]. Sci China Phys Mech Astron, 2022, 65(7): 274202. doi: 10.1007/s11433-021-1835-x

    CrossRef Google Scholar

    [10] Wang J, Niino H, Yabe A. One-step microfabrication of fused silica by laser ablation of an organic solution[J]. Appl Phys A, 1999, 68(1): 111−113. doi: 10.1007/s003390050863

    CrossRef Google Scholar

    [11] Tian W T, Wang Z W, Wang C J, et al. Effects of bubble behaviors in femtosecond laser machining of silicon wafer in liquids[J]. J Manuf Process, 2022, 83: 502−511. doi: 10.1016/j.jmapro.2022.09.024

    CrossRef Google Scholar

    [12] Derrien T J Y, Koter R, Krüger J, et al. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water[J]. J Appl Phys, 2014, 116(7): 074902. doi: 10.1063/1.4887808

    CrossRef Google Scholar

    [13] Long J Y, Eliceiri M, Vangelatos Z, et al. Early dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J]. Opt Express, 2020, 28(10): 14300−14309. doi: 10.1364/OE.391584

    CrossRef Google Scholar

    [14] Kalus M R, Bärsch N, Streubel R, et al. How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids - quantification of their volume, dwell dynamics, and gas composition[J]. Phys Chem Chem Phys, 2017, 19(10): 7112−7123. doi: 10.1039/C6CP07011F

    CrossRef Google Scholar

    [15] Zhang D S, Li Z G, Sugioka K. Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids[J]. J Phys Photonics, 2021, 3(4): 042002. doi: 10.1088/2515-7647/AC0BFD

    CrossRef Google Scholar

    [16] Zhang D S, Li Z G, Liang C H. Diverse nanomaterials synthesized by laser ablation of pure metals in liquids[J]. Sci China Phys Mech Astron, 2022, 65(7): 274203. doi: 10.1007/s11433-021-1860-x

    CrossRef Google Scholar

    [17] Chen L W, Hong M H. Functional nonlinear optical nanoparticles synthesized by laser ablation[J]. Opto-Electron Sci, 2022, 1(5): 210007. doi: 10.29026/oes.2022.210007

    CrossRef Google Scholar

    [18] Hoppius J S, Maragkaki S, Kanitz A, et al. Optimization of femtosecond laser processing in liquids[J]. Appl Surf Sci, 2019, 467–468: 255−260. doi: 10.1016/j.apsusc.2018.10.121

    CrossRef Google Scholar

    [19] Guo Y, Qiu P, Xu S L, et al. Laser-induced microjet-assisted ablation for high-quality microfabrication[J]. Int J Extrem Manuf, 2022, 4(3): 035101. doi: 10.1088/2631-7990/ac6632

    CrossRef Google Scholar

    [20] Ren N F, Xia K B, Yang H Y, et al. Water-assisted femtosecond laser drilling of alumina ceramics[J]. Ceram Int, 2021, 47(8): 11465−11473. doi: 10.1016/j.ceramint.2020.12.274

    CrossRef Google Scholar

    [21] Zhang D S, Ranjan B, Tanaka T, et al. Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring[J]. Int J Extrem Manuf, 2020, 2(1): 015001. doi: 10.1088/2631-7990/ab729f

    CrossRef Google Scholar

    [22] Zhang D S, Wu L C, Ueki M, et al. Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application[J]. Int J Extrem Manuf, 2020, 2(4): 045001. doi: 10.1088/2631-7990/abb5f3

    CrossRef Google Scholar

    [23] Wang J, Niino H, Yabe A. Micromachining of transparent materials with super-heated liquid generated by multiphotonic absorption of organic molecule[J]. Appl Surf Sci, 2000, 154–155: 571−576. doi: 10.1016/S0169-4332(99)00462-6

    CrossRef Google Scholar

    [24] Cao X W, Chen Q D, Fan H, et al. Liquid-assisted femtosecond laser precision-machining of silica[J]. Nanomaterials (Basel), 2018, 8(5): 287. doi: 10.3390/nano8050287

    CrossRef Google Scholar

    [25] Sun X Y, Yu J L, Hu Y W, et al. Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing[J]. Appl Opt, 2019, 58(33): 9027−9032. doi: 10.1364/AO.58.009027

    CrossRef Google Scholar

    [26] Kopitkovas G, Lippert T, David C, et al. Fabrication of beam homogenizers in quartz by laser micromachining[J]. J Photochem Photobiol A: Chem, 2004, 166(1–3): 135–140.https://doi.org/10.1016/j.jphotochem.2004.05.001.

    Google Scholar

    [27] Zhigalina O M, Khmelenin D N, Atanova A V, et al. A nanoscale modification of materials at thermoplasmonic laser-induced backside wet etching of sapphire[J]. Plasmonics, 2020, 15(3): 599−608. doi: 10.1007/s11468-019-01091-9

    CrossRef Google Scholar

    [28] Long J Y, Zhou C X, Cao Z Q, et al. Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers[J]. Opt Laser Technol, 2019, 109: 61−70. doi: 10.1016/j.optlastec.2018.07.066

    CrossRef Google Scholar

    [29] Olenin A Y, Lisichkin G V. Metal nanoparticles in condensed media: preparation and the bulk and surface structural dynamics[J]. Russ Chem Rev, 2011, 80(7): 605−630. doi: 10.1070/RC2011v080n07ABEH004201

    CrossRef Google Scholar

    [30] Ding X M, Sato T, Kawaguchi Y, et al. Laser-induced backside wet etching of sapphire[J]. Jpn J Appl Phys, 2003, 42(2B): L176−L178. doi: 10.1143/JJAP.42.L176

    CrossRef Google Scholar

    [31] Xie X Z, Huang X D, Jiang W, et al. Three dimensional material removal model of laser-induced backside wet etching of sapphire substrate with CuSO4 solutions[J]. Opt Laser Technol, 2017, 89: 59−68. doi: 10.1016/j.optlastec.2016.09.031

    CrossRef Google Scholar

    [32] Yan T Y, Ji L F, Hong M H. Backside wet etching of sapphire substrate by laser-induced carbothermal reduction[J]. Opt Laser Technol, 2022, 149: 107900. doi: 10.1016/J.OPTLASTEC.2022.107900

    CrossRef Google Scholar

    [33] Luong K P, Tanabe-Yamagishi R, Yamada N, et al. Laser-assisted wet etching of silicon back surfaces using 1552 nm femtosecond laser[J]. Int J Electr Mach, 2020, 25: 7. doi: 10.2526/ijem.25.7

    CrossRef Google Scholar

    [34] Deng C, Ki H. Tunable wetting surfaces with interacting cavities via femtosecond laser patterning and wet etching[J]. J Appl Phys, 2020, 128(1): 015306. doi: 10.1063/5.0011885

    CrossRef Google Scholar

    [35] Wang S K, Zhang F, Yang Q, et al. Chalcogenide glass IR artificial compound eyes based on femtosecond laser microfabrication[J]. Adv Mater Technol, 2022, 8(2): 2200741. doi: 10.1002/admt.202200741

    CrossRef Google Scholar

    [36] Kim Y S, Kim J, Choe J S, et al. Semiconductor microlenses fabricated by one-step wet etching[J]. IEEE Photonics Technol Lett, 2000, 12(5): 507−509. doi: 10.1109/68.841268

    CrossRef Google Scholar

    [37] Atuchin V V, Soldatenkov I S, Kirpichnikov A V, et al. Multilevel kinoform microlens arrays in fused silica for high-power laser optics[J]. Proc SPIE, 2004, 5481: 43−46. doi: 10.1117/12.558295

    CrossRef Google Scholar

    [38] Cao X W, Lu Y M, Fan H, et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array[J]. Appl Opt, 2018, 57(32): 9604−9608. doi: 10.1364/AO.57.009604

    CrossRef Google Scholar

    [39] Gao B, Chen T, Chen Y, et al. Fabrication of through micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching[J]. Chin Phys Lett, 2015, 32(10): 107901. doi: 10.1088/0256-307X/32/10/107901

    CrossRef Google Scholar

    [40] Khuat V, Ma Y C, Si J H, et al. Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching[J]. Appl Surf Sci, 2014, 289: 529−532. doi: 10.1016/j.apsusc.2013.11.030

    CrossRef Google Scholar

    [41] Meng X W, Yang Q, Chen F, et al. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics[J]. Proc SPIE, 2015, 9449: 94493N. doi: 10.1117/12.2075880

    CrossRef Google Scholar

    [42] Wang C W, Yang L, Zhang C C, et al. Multilayered skyscraper microchips fabricated by hybrid "all-in-one" femtosecond laser processing[J]. Microsyst Nanoeng, 2019, 5: 17. doi: 10.1038/s41378-019-0056-3

    CrossRef Google Scholar

    [43] Cho C S, Kong D, Kim B. Wet/dry etching combined microtextured structures for high-efficiency solar cells[J]. Micro Nano Lett, 2015, 10(10): 528−532. doi: 10.1049/mnl.2015.0182

    CrossRef Google Scholar

    [44] Sugioka K, Masuda M, Hongo T, et al. Three-dimensional microfluidic structure embedded in photostructurable glass by femtosecond laser for lab-on-chip applications[J]. Appl Phys A, 2004, 79(4–6): 815−817. doi: 10.1007/s00339-004-2569-2

    CrossRef Google Scholar

    [45] Wang B X, Qi J Y, Lu Y M, et al. Rapid fabrication of smooth micro-optical components on glass by etching-assisted femtosecond laser modification[J]. Materials (Basel), 2022, 15(2): 678. doi: 10.3390/MA15020678

    CrossRef Google Scholar

    [46] Sugioka K, Cheng Y. Integrated microchips for biological analysis fabricated by femtosecond laser direct writing[J]. MRS Bull, 2011, 36(12): 1020−1027. doi: 10.1557/mrs.2011.274

    CrossRef Google Scholar

    [47] Xu J, Wu D, Hanada Y, et al. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing[J]. Lab Chip, 2013, 13(23): 4608−4616. doi: 10.1039/c3lc50962a

    CrossRef Google Scholar

    [48] Wu D, Wu S Z, Xu J, et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip[J]. Laser Photon Rev, 2014, 8(3): 458−467. doi: 10.1002/lpor.201400005

    CrossRef Google Scholar

    [49] Bian H, Shan C, Liu K Y, et al. A miniaturized Rogowski current transducer with wide bandwidth and fast response[J]. J Micromech Microeng, 2016, 26(11): 115015. doi: 10.1088/0960-1317/26/11/115015

    CrossRef Google Scholar

    [50] Ehrhardt M, Lorenz P, Han B, et al. Laser-induced backside wet etching of SiO2 with a visible ultrashort laser pulse by using KMnO4 solution as an absorber liquid[J]. J Laser Micro/Nanoeng, 2018, 13(2): 47−54. doi: 10.2961/jlmn.2018.02.0001

    CrossRef Google Scholar

    [51] Kwon K K, Kim H, Kim T, et al. High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching[J]. J Mater Process Technol, 2020, 278: 116505. doi: 10.1016/j.jmatprotec.2019.116505

    CrossRef Google Scholar

    [52] Li X Y, Li R Y, Yu Z, et al. Deepening of nanograting structures on Si by a two-step laser spatial-selective amorphization strategy combined with chemical etching[J]. Appl Surf Sci, 2022, 589: 152965. doi: 10.1016/J.APSUSC.2022.152965

    CrossRef Google Scholar

    [53] Zhou S P, Li X W, Huang J, et al. Fabrication of nanogap structures through spatially shaped femtosecond laser modification with the assistance of wet chemical etching[J]. Opt Lett, 2021, 46(15): 3560−3563. doi: 10.1364/OL.431385

    CrossRef Google Scholar

    [54] Hao B, Liu H W. , Chen F, et al. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces[J]. Opt Express, 2012, 20(12): 12939−12948. doi: 10.1364/OE.20.012939

    CrossRef Google Scholar

    [55] Li X W, Xie Q, Jiang L, et al. Controllable Si (100) micro/nanostructures by chemical-etching-assisted femtosecond laser single-pulse irradiation[J]. Appl Phys Lett, 2017, 110(18): 181907. doi: 10.1063/1.4982790

    CrossRef Google Scholar

    [56] Ito Y, Chiah S Y, Luong K P, et al. Formation of fine periodic structures on back surface of Si substrate by a femtosecond laser at 1552 nm[J]. J Laser Micro/Nanoeng, 2020, 15(2): 111−117. doi: 10.2961/jlmn.2020.02.2006

    CrossRef Google Scholar

    [57] Zhang D S, Li X Z, Fu Y, et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS[J]. Opto-Electron Adv, 2022, 5(2): 210066. doi: 10.29026/oea.2022.210066

    CrossRef Google Scholar

    [58] Zhang D S, Ranjan B, Tanaka T, et al. Carbonized hybrid micro/nanostructured metasurfaces produced by femtosecond laser ablation in organic solvents for biomimetic antireflective surfaces[J]. ACS Appl Nano Mater, 2020, 3(2): 1855−1871. doi: 10.1021/acsanm.9b02520

    CrossRef Google Scholar

    [59] Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electron Adv, 2019, 2(3): 190002. doi: 10.29026/oea.2019.190002

    CrossRef Google Scholar

    [60] Ali N, Bashir S, Umm-I-Kalsoom, et al. Effect of liquid environment on the titanium surface modification by laser ablation[J]. Appl Surf Sci, 2017, 405: 298−307. doi: 10.1016/j.apsusc.2017.02.047

    CrossRef Google Scholar

    [61] Sato T, Kurosaki R, Kawaguchi Y, et al. Fabrication of multiple slanted microstructures on silica glass by laser-induced backside wet etching[J]. J Laser Micro/Nanoeng, 2010, 5(3): 256−262. doi: 10.2961/jlmn.2010.03.0014

    CrossRef Google Scholar

    [62] Zhao T, Zhuo M, Zhou X, et al. Fused silica gyroscope resonator manufactured with femtosecond laser assisted wet etching[J]. J Microelectromech Syst, 2022, 31(3): 315−317. doi: 10.1109/JMEMS.2022.3154890

    CrossRef Google Scholar

    [63] Skora J L, Gaiffe O, Bargiel S, et al. High-fidelity glass micro-axicons fabricated by laser-assisted wet etching[J]. Opt Express, 2022, 30(3): 3749−3759. doi: 10.1364/OE.446740

    CrossRef Google Scholar

    [64] Zhang F, Wang C, Yin K, et al. Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching[J]. Sci Rep, 2018, 8(1): 2419. doi: 10.1038/s41598-018-20807-1

    CrossRef Google Scholar

    [65] Sun X Y, Zheng J F, Liang C, et al. Improvement of rear damage of thin fused silica by liquid-assisted femtosecond laser cutting[J]. Appl Phys A, 2019, 125(7): 461. doi: 10.1007/s00339-019-2754-y

    CrossRef Google Scholar

    [66] Ehrhardt M, Raciukaitis G, Gecys P, et al. Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses[J]. Appl Surf Sci, 2010, 256(23): 7222−7227. doi: 10.1016/j.apsusc.2010.05.055

    CrossRef Google Scholar

    [67] Böhme R, Pissadakis S, Ehrhardt M, et al. Ultra-short laser processing of transparent material at the interface to liquid[J]. J Phys D Appl Phys, 2006, 39(7): 1398−1404. doi: 10.1088/0022-3727/39/7/010

    CrossRef Google Scholar

    [68] Shao Z Q, Wu Y L, Wang S, et al. All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching[J]. Opt Express, 2021, 29(3): 4139−4146. doi: 10.1364/OE.417246

    CrossRef Google Scholar

    [69] Li Q K, Cao J J, Yu Y H, et al. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing[J]. Opt Lett, 2017, 42(3): 543−546. doi: 10.1364/OL.42.000543

    CrossRef Google Scholar

    [70] Pissadakis S, Böhme R, Zimmer K. Sub-micron periodic structuring of sapphire by laser induced backside wet etching technique[J]. Opt Express, 2007, 15(4): 1428−1433. doi: 10.1364/OE.15.001428

    CrossRef Google Scholar

    [71] Ehrhardt M, Raciukaitis G, Gecys P, et al. Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses[J]. Appl Phys A, 2010, 101(2): 399−404. doi: 10.1007/s00339-010-5833-7

    CrossRef Google Scholar

    [72] Zhou S K, Shen L, Wang F J, et al. High-aspect-ratio ZnSe microstructure generated by spatially shaped femtosecond laser writing assisted with wet chemical etching[J]. Opt Laser Technol, 2022, 147: 107687. doi: 10.1016/j.optlastec.2021.107687

    CrossRef Google Scholar

    [73] Bischof D, Kahl M, Michler M. Laser-assisted etching of borosilicate glass in potassium hydroxide[J]. Opt Mater Express, 2021, 11(4): 1185−1195. doi: 10.1364/OME.417871

    CrossRef Google Scholar

    [74] Seo J M, Kwon K K, Song K Y, et al. Deposition of durable micro copper patterns into glass by combining laser-induced backside wet etching and laser-induced chemical liquid phase deposition methods[J]. Materials (Basel), 2020, 13(13): 2977. doi: 10.3390/ma13132977

    CrossRef Google Scholar

    [75] Zhang D S, Gökce B, Sommer S, et al. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol[J]. Appl Surf Sci, 2016, 367: 222−230. doi: 10.1016/j.apsusc.2016.01.071

    CrossRef Google Scholar

    [76] Miyata Y, Nakamukai Y, Azevedo C T, et al. Photoetching method that provides improved silicon-on-insulator layer thickness uniformity in a defined area[J]. Microelectron Eng, 2017, 180: 93−95. doi: 10.1016/j.mee.2017.06.008

    CrossRef Google Scholar

    [77] Duan M M, Wu J J, Zhang Y B, et al. Ultra-low-reflective, self-cleaning surface by fabrication dual-scale hierarchical optical structures on silicon[J]. Coatings, 2021, 11(12): 1541. doi: 10.3390/coatings11121541

    CrossRef Google Scholar

    [78] Kawaguchi Y, Sato T, Narazaki A, et al. Rapid prototyping of silica glass microstructures by the LIBWE method: fabrication of deep microtrenches[J]. J Photochem Photobiol A:Chem, 2006, 182(3): 319−324. doi: 10.1016/j.jphotochem.2006.05.033

    CrossRef Google Scholar

    [79] Koker L, Kolasinski K W. Photoelectrochemical etching of Si and porous Si in aqueous HF[J]. Phys Chem Chem Phys, 2000, 2(2): 277−281. doi: 10.1039/a908383i

    CrossRef Google Scholar

    [80] Gabouze N, Belhousse S, Outemzabet R. Chemical etching of mono and poly-crystalline silicon in HF/K2Cr2O7/H2O solutions[J]. Acta Phys Slovaca, 2003, 53(3): 207−214.

    Google Scholar

    [81] Romano L, Vila-Comamala J, Jefimovs K, et al. High-aspect-ratio grating microfabrication by platinum-assisted chemical etching and gold electroplating[J]. Adv Eng Mater, 2020, 22(10): 2000258. doi: 10.1002/adem.202000258

    CrossRef Google Scholar

    [82] Immanuel P N, Chiang C C, Lee T H, et al. Utilization of low wavelength laser linking with electrochemical etching to produce nano-scale porous layer on p-type silicon wafer with high luminous flux[J]. ECS J Solid State Sci Technol, 2021, 10(1): 016003. doi: 10.1149/2162-8777/abdc4b

    CrossRef Google Scholar

    [83] Chen L, Cao K Q, Li Y L, et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens[J]. Opto-Electron Adv, 2021, 4(12): 200036. doi: 10.29026/oea.2021.200036

    CrossRef Google Scholar

    [84] Chen F, Liu H W, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Opt Express, 2010, 18(19): 20334−20343. doi: 10.1364/OE.18.020334

    CrossRef Google Scholar

    [85] Kim J, Kim S I, Joung Y H, et al. Two-step hybrid process of movable part inside glass substrate using ultrafast laser[J]. Micro Nano Syst Lett, 2021, 9(1): 16. doi: 10.1186/S40486-021-00142-3

    CrossRef Google Scholar

    [86] Paiè P, Bragheri F, Di Carlo D, et al. Particle focusing by 3D inertial microfluidics[J]. Microsyst Nanoeng, 2017, 3: 17027. doi: 10.1038/micronano.2017.27

    CrossRef Google Scholar

    [87] He F, Cheng Y, Xu Z Z, et al. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser[J]. Opt Lett, 2010, 35(3): 282−284. doi: 10.1364/OL.35.000282

    CrossRef Google Scholar

    [88] Jipa F, Iosub S, Calin B, et al. High repetition rate UV versus VIS picosecond laser fabrication of 3D microfluidic channels embedded in photosensitive glass[J]. Nanomaterials (Basel), 2018, 8(8): 583. doi: 10.3390/nano8080583

    CrossRef Google Scholar

    [89] Capuano L, Berenschot J W, Tiggelaar R M, et al. Fabrication of microstructures in the bulk and on the surface of sapphire by anisotropic selective wet etching of laser-affected volumes[J]. J Micromech Microeng, 2022, 32(12): 125003. doi: 10.1088/1361-6439/ac9911

    CrossRef Google Scholar

    [90] Hua J G, Liang S Y, Chen Q D, et al. Free-form micro-optics out of crystals: femtosecond laser 3D sculpturing[J]. Adv Funct Mater, 2022, 32(26): 2200255. doi: 10.1002/adfm.202200255

    CrossRef Google Scholar

    [91] Gao S, Li Z Z, Hu Z Y, et al. Diamond optical vortex generator processed by ultraviolet femtosecond laser[J]. Opt Lett, 2020, 45(9): 2684−2687. doi: 10.1364/OL.391598

    CrossRef Google Scholar

    [92] Liu X Q, Zhang Y L, Li Q K, et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX, 2022, 3(1): 1. doi: 10.1186/s43074-022-00047-3

    CrossRef Google Scholar

    [93] Masuda M, Sugioka K, Cheng Y, et al. Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application[J]. Appl Phys A, 2004, 78(7): 1029−1032. doi: 10.1007/s00339-003-2447-3

    CrossRef Google Scholar

    [94] Kim S, Kim J, Joung Y H, et al. Optimization of selective laser-induced etching (SLE) for fabrication of 3D glass microfluidic device with multi-layer micro channels[J]. Micro Nano Syst Lett, 2019, 7(1): 15. doi: 10.1186/s40486-019-0094-5

    CrossRef Google Scholar

    [95] Shan C, Yang Q, Bian H, et al. Fabrication of three-dimensional microvalves of internal nested structures inside fused silica[J]. Micromachines (Basel), 2021, 12(1): 43. doi: 10.3390/MI12010043

    CrossRef Google Scholar

    [96] Liao Y, Song J X, Li E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab Chip, 2012, 12(4): 746−749. doi: 10.1039/c2lc21015k

    CrossRef Google Scholar

    [97] 张超, 李敏, 叶柏臣, 等. 飞秒激光时空整形的电子动态调控微孔加工[J]. 光电工程, 2022, 49(2): 210389. doi: 10.12086/oee.2022.210389

    CrossRef Google Scholar

    Zhang C, Li M, Ye B C, et al. Electrons dynamics control micro-hole drilling using temporally/spatially shaped femtosecond laser[J]. Opto-Electron Eng, 2022, 49(2): 210389. doi: 10.12086/oee.2022.210389

    CrossRef Google Scholar

    [98] Lu Y M, Duan Y Z, Liu X Q, et al. High-quality rapid laser drilling of transparent hard materials[J]. Opt Lett, 2022, 47(4): 921−924. doi: 10.1364/OL.452530.

    CrossRef Google Scholar

    [99] Madhukar Y K, Mullick S, Nath A K. A study on co-axial water-jet assisted fiber laser grooving of silicon[J]. J Mater Process Technol, 2016, 227: 200−215. doi: 10.1016/j.jmatprotec.2015.08.013

    CrossRef Google Scholar

    [100] Li W Y, Luo Y, Xiong B, et al. Fabrication of GaN-based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching[J]. Phys Status Solidi A, 2015, 212(10): 2341−2344. doi: 10.1002/pssa.201532223

    CrossRef Google Scholar

    [101] Shao Z Q, Wu Y L, Wang S, et al. All-sapphire fiber-optic pressure sensors for extreme harsh environments[J]. Opt Express, 2022, 30(3): 3665−3674. doi: 10.1364/OE.451764

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(8379) PDF downloads(1234) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint