Dong B, Zhang J, Wang D W, et al. Femtosecond laser micromachining optical devices[J]. Opto-Electron Eng, 2023, 50(3): 220073. doi: 10.12086/oee.2023.220073
Citation: Dong B, Zhang J, Wang D W, et al. Femtosecond laser micromachining optical devices[J]. Opto-Electron Eng, 2023, 50(3): 220073. doi: 10.12086/oee.2023.220073

Femtosecond laser micromachining optical devices

    Fund Project: National Natural Science Foundation of China (61927814, 52122511, 91963127, 52075516, U20A20290, 52175396) and Major Scientific and Technological Projects in Anhui Province (201903a05020005)
More Information
  • Miniaturization, integration, and flexible deformation are the future development trends of optical devices. Meanwhile, optical systems based on integrated micro-optical devices stand out for their low power consumption, fast response, and high information storage capacity. However, current high-precision micro/nano processing methods, such as FIB (Focused Ion Beam) and semiconductor lithography, are far too complex and in lack of flexibility. Femtosecond laser, as a non-contact, high-precision, high-intensity tool for "cold" processing, is particularly favored in micro/nano processing. This review first elucidated the background and mechanism of femtosecond laser micromachining used in optical device. After that, we discussed a number of methods employed to improve the resolution of femtosecond micromachining. Then we listed various advanced processing means based on femtosecond laser and systematically summarized recent representative research developments of femtosecond laser micromachining used in microlens, gratings, optical waveguides, and photonic crystals. Finally, we concluded the challenges and the directions for further development of femtosecond laser machining in the field of micro-optical devices.
  • 加载中
  • [1] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Opt Lett, 1997, 22(2): 132−134. doi: 10.1364/OL.22.000132

    CrossRef Google Scholar

    [2] 杨建军. 飞秒激光超精细“冷”加工技术及其应用(续)[J]. 激光与光电子学进展, 2004, 41(4): 39−47.

    Google Scholar

    Yang J J. Femtosecond laser “cold” micro-machining and its advanced applications (Ⅱ)[J]. Laser Optoelectron Prog, 2004, 41(4): 39−47.

    Google Scholar

    [3] Cao Y Y, Gan Z S, Jia B H, et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Opt Express, 2011, 19(20): 19486−19494. doi: 10.1364/OE.19.019486

    CrossRef Google Scholar

    [4] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nat Commun, 2013, 4(1): 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [5] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Appl Phys A, 1996, 63(2): 109−115. doi: 10.1007/BF01567637

    CrossRef Google Scholar

    [6] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro-and nanofabrication[J]. Appl Phys Rev, 2014, 1(4): 041303. doi: 10.1063/1.4904320

    CrossRef Google Scholar

    [7] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Opt Lett, 1996, 21(21): 1729−1731. doi: 10.1364/OL.21.001729

    CrossRef Google Scholar

    [8] Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Opt Lett, 1996, 21(24): 2023−2025. doi: 10.1364/OL.21.002023

    CrossRef Google Scholar

    [9] Miyamoto I, Horn A, Gottmann J, et al. Fusion welding of glass using femtosecond laser pulses with high-repetition rates[J]. J Laser Micro Nanoen, 2007, 2(1): 57−63. doi: 10.2961/jlmn.2007.01.0011

    CrossRef Google Scholar

    [10] Cheng Y, Sugioka K, Midorikawa K, et al. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser[J]. Opt Lett, 2003, 28(13): 1144−1146. doi: 10.1364/OL.28.001144

    CrossRef Google Scholar

    [11] Cheng Y, Sugioka K, Midorikawa K. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing[J]. Opt Lett, 2004, 29(17): 2007−2009. doi: 10.1364/OL.29.002007

    CrossRef Google Scholar

    [12] Liu H L, Jia Y C, de Aldana J R V, et al. Femtosecond laser inscribed cladding waveguides in Nd: YAG ceramics: fabrication, fluorescence imaging and laser performance[J]. Opt Express, 2012, 20(17): 18620−18629. doi: 10.1364/OE.20.018620

    CrossRef Google Scholar

    [13] Mizeikis V, Purlys V, Buividas R, et al. Realization of structural color by direct laser write technique in photoresist[J]. J Laser Micro Nanoen, 2014, 9(1): 42−45. doi: 10.2961/jlmn.2014.01.0009

    CrossRef Google Scholar

    [14] Cheng Y, Sugioka K, Midorikawa K, et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Opt Lett, 2003, 28(1): 55−57. doi: 10.1364/OL.28.000055

    CrossRef Google Scholar

    [15] Osellame R, Taccheo S, Marangoni M, et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams[J]. J Opt Soc Am B, 2003, 20(7): 1559−1567. doi: 10.1364/JOSAB.20.001559

    CrossRef Google Scholar

    [16] He F, Xu H, Cheng Y, et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Opt Lett, 2010, 35(7): 1106−1108. doi: 10.1364/OL.35.001106

    CrossRef Google Scholar

    [17] Liew W L A, Zhang Y L. Laser-based fabrication of 3D hydrogel constructs using bessel beams[J]. Bioprinting, 2018, 9: 44−51. doi: 10.1016/j.bprint.2018.02.004

    CrossRef Google Scholar

    [18] Wang Z, Jiang L, Li X W, et al. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching[J]. Opt Lett, 2018, 43(1): 98−101. doi: 10.1364/OL.43.000098

    CrossRef Google Scholar

    [19] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697−698. doi: 10.1038/35089130

    CrossRef Google Scholar

    [20] Liao C Z, Anderson W, Antaw F, et al. Two-photon nanolithography of tailored hollow three-dimensional microdevices for biosystems[J]. ACS Omega, 2019, 4(1): 1401−1409. doi: 10.1021/acsomega.8b03164

    CrossRef Google Scholar

    [21] Cai Z, Qi X B, Pan D, et al. Dynamic Airy imaging through high-efficiency broadband phase microelements by femtosecond laser direct writing[J]. Photonics Res, 2020, 8(6): 875−883. doi: 10.1364/PRJ.387495

    CrossRef Google Scholar

    [22] Xu L Q, Wang C W, Qi X B, et al. Femtosecond laser direct writing continuous phase vortex gratings with proportionally distributed diffraction energy[J]. Appl Phys Lett, 2021, 119(13): 131101. doi: 10.1063/5.0061590

    CrossRef Google Scholar

    [23] Liu S L, Ni J C, Zhang C, et al. Tailoring optical vortical dichroism with stereometamaterials[J]. Laser Photonics Rev, 2022, 16(2): 2100518. doi: 10.1002/lpor.202100518

    CrossRef Google Scholar

    [24] Ni J C, Liu S L, Hu G W, et al. Giant helical dichroism of single chiral nanostructures with photonic orbital angular momentum[J]. ACS Nano, 2021, 15(2): 2893−2900. doi: 10.1021/acsnano.0c08941

    CrossRef Google Scholar

    [25] Ma Z C, Hu X Y, Zhang Y L, et al. Smart compound eyes enable tunable imaging[J]. Adv Funct Mater, 2019, 29(38): 1903340. doi: 10.1002/adfm.201903340

    CrossRef Google Scholar

    [26] Hu Y L, Wang Z Y, Jin D D, et al. Botanical‐inspired 4D printing of hydrogel at the microscale[J]. Adv Funct Mater, 2020, 30(4): 1907377. doi: 10.1002/adfm.201907377

    CrossRef Google Scholar

    [27] Zhang Y L, Tian Y, Wang H, et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation[J]. ACS Nano, 2019, 13(4): 4041−4048. doi: 10.1021/acsnano.8b08200

    CrossRef Google Scholar

    [28] Lv C, Sun X C, Xia H, et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing[J]. Sensor Actuat B Chem, 2018, 259: 736−744. doi: 10.1016/j.snb.2017.12.053

    CrossRef Google Scholar

    [29] Xin C, Jin D D, Hu Y L, et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment[J]. ACS Nano, 2021, 15(11): 18048−18059. doi: 10.1021/acsnano.1c06651

    CrossRef Google Scholar

    [30] Chen Q Y, Lv P Y, Huang T Y, et al. Encoding smart microjoints for microcrawlers with enhanced locomotion[J]. Adv Intell Syst, 2020, 2(3): 1900128. doi: 10.1002/aisy.201900128

    CrossRef Google Scholar

    [31] Jin D D, Chen Q Y, Huang T Y, et al. Four-dimensional direct laser writing of reconfigurable compound micromachines[J]. Mater Today, 2020, 32: 19−25. doi: 10.1016/j.mattod.2019.06.002

    CrossRef Google Scholar

    [32] Huang T Y, Huang H W, Jin D D, et al. Four-dimensional micro-building blocks[J]. Sci Adv, 2020, 6(3): eaav8219. doi: 10.1126/sciadv.aav8219

    CrossRef Google Scholar

    [33] Huang Z C, Chen C, Wang X H, et al. Light-driven locomotion of underwater bubbles on ultrarobust paraffin-impregnated laser-ablated Fe3O4-doped slippery surfaces[J]. ACS Appl Mater Interfaces, 2021, 13(7): 9272−9280. doi: 10.1021/acsami.0c22717

    CrossRef Google Scholar

    [34] Chen C, Zhou L L, Shi L A, et al. Ultralow-voltage-driven smart control of diverse drop’s anisotropic sliding by in situ switching joule heat on paraffin-infused microgrooved slippery surface[J]. ACS Appl Mater Interfaces, 2020, 12(1): 1895−1904. doi: 10.1021/acsami.9b17936

    CrossRef Google Scholar

    [35] Chen C, Huang Z C, Jiao Y L, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage[J]. ACS Nano, 2019, 13(5): 5742−5752. doi: 10.1021/acsnano.9b01180

    CrossRef Google Scholar

    [36] Chen C, Shi L A, Huang Z C, et al. Microhole‐arrayed PDMS with controllable wettability gradient by one‐step femtosecond laser drilling for ultrafast underwater bubble unidirectional self‐transport[J]. Adv Mater Interfaces, 2019, 6(12): 1900297. doi: 10.1002/admi.201900297

    CrossRef Google Scholar

    [37] Jiang S J, Hu Y L, Wu H, et al. Multifunctional Janus Microplates arrays actuated by magnetic fields for water/light switches and bio‐inspired assimilatory coloration[J]. Adv Mater, 2019, 31(15): 1807507. doi: 10.1002/adma.201807507

    CrossRef Google Scholar

    [38] Jiang S J, Hu Y L, Wu H, et al. Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer[J]. Nano Lett, 2020, 20(10): 7519−7529. doi: 10.1021/acs.nanolett.0c02997

    CrossRef Google Scholar

    [39] Liu J K, Jia X, Wu W S, et al. Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse[J]. Opt Express, 2018, 26(5): 6302−6315. doi: 10.1364/OE.26.006302

    CrossRef Google Scholar

    [40] Buividas R, Rekštytė S, Malinauskas M, et al. Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses[J]. Opt Mater Express, 2013, 3(10): 1674−1686. doi: 10.1364/OME.3.001674

    CrossRef Google Scholar

    [41] Li Z Z, Wang L, Fan H, et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light Sci Appl, 2020, 9(1): 41. doi: 10.1038/s41377-020-0275-2

    CrossRef Google Scholar

    [42] Lin J T, Yu S J, Ma Y G, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing[J]. Opt Express, 2012, 20(9): 10212−10217. doi: 10.1364/OE.20.010212

    CrossRef Google Scholar

    [43] Xu H L, Sun H B. Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities[J]. Sci China Phys Mech Astron, 2015, 58(11): 114202. doi: 10.1007/s11433-015-5720-5

    CrossRef Google Scholar

    [44] Wu H, Zhang L R, Jiang S J, et al. Ultrathin and high-stress-resolution liquid-metal-based pressure sensors with simple device structures[J]. ACS Appl Mater Interfaces, 2020, 12(49): 55390−55398. doi: 10.1021/acsami.0c16250

    CrossRef Google Scholar

    [45] Huang J, Jiang L, Li X W, et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification[J]. Nanophotonics, 2019, 8(5): 869−878. doi: 10.1515/nanoph-2019-0056

    CrossRef Google Scholar

    [46] Liu Y, Li S Y, Niu S C, et al. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate[J]. Appl Surf Sci, 2016, 379: 230−237. doi: 10.1016/j.apsusc.2016.03.234

    CrossRef Google Scholar

    [47] Kuroiwa Y, Takeshima N, Narita Y, et al. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements[J]. Opt Express, 2004, 12(9): 1908−1915. doi: 10.1364/OPEX.12.001908

    CrossRef Google Scholar

    [48] Torres-Peiró S, González-Ausejo J, Mendoza-Yero O, et al. Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses[J]. Opt Express, 2013, 21(26): 31830−31836. doi: 10.1364/OE.21.031830

    CrossRef Google Scholar

    [49] Maibohm C, Silvestre O F, Borme J, et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications[J]. Sci Rep, 2020, 10(1): 8740. doi: 10.1038/s41598-020-64955-9

    CrossRef Google Scholar

    [50] Wang X D, Yu H B, Li P W, et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review[J]. Opt Laser Technol, 2021, 135: 106687. doi: 10.1016/j.optlastec.2020.106687

    CrossRef Google Scholar

    [51] Gu C L, Zhang D P, Chang Y N, et al. Digital micromirror device-based ultrafast pulse shaping for femtosecond laser[J]. Opt Lett, 2015, 40(12): 2870−2873. doi: 10.1364/OL.40.002870

    CrossRef Google Scholar

    [52] Cheng J Y, Gu C L, Zhang D P, et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device[J]. Opt Lett, 2015, 40(21): 4875−4878. doi: 10.1364/OL.40.004875

    CrossRef Google Scholar

    [53] Guo Y M, Wang Y, Hu Q L, et al. High-resolution femtosecond laser beam shaping via digital holography[J]. Opt Lett, 2019, 44(4): 987−990. doi: 10.1364/OL.44.000987

    CrossRef Google Scholar

    [54] Mills B, Heath D J, Feinaeugle M, et al. Laser ablation via programmable image projection for submicron dimension machining in diamond[J]. J Laser Appl, 2014, 26(4): 041501. doi: 10.2351/1.4893749

    CrossRef Google Scholar

    [55] Gu C L, Zhang D P, Wang D E, et al. Parallel femtosecond laser light sheet micro-manufacturing based on temporal focusing[J]. Precis Eng, 2017, 50: 198−203. doi: 10.1016/j.precisioneng.2017.05.006

    CrossRef Google Scholar

    [56] Wang D E, Wen C Y, Chang Y N, et al. Ultrafast laser-enabled 3D metal printing: a solution to fabricate arbitrary submicron metal structures[J]. Precis Eng, 2018, 52: 106−111. doi: 10.1016/j.precisioneng.2017.11.015

    CrossRef Google Scholar

    [57] Saha S K, Wang D E, Nguyen V H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105−109. doi: 10.1126/science.aax8760

    CrossRef Google Scholar

    [58] Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses[J]. Opt Lett, 2006, 31(11): 1705−1707. doi: 10.1364/OL.31.001705

    CrossRef Google Scholar

    [59] Zhang C C, Hu Y L, Du W Q, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Sci Rep, 2016, 6: 33281. doi: 10.1038/srep33281

    CrossRef Google Scholar

    [60] Wang D, Xiao D, Li N N, et al. Holographic display system based on effective area expansion of SLM[J]. IEEE Photonics J, 2019, 11(6): 7001312.

    Google Scholar

    [61] Blinder D, Schelkens P. Phase added sub-stereograms for accelerating computer generated holography[J]. Opt Express, 2020, 28(11): 16924−16934. doi: 10.1364/OE.388881

    CrossRef Google Scholar

    [62] Xu B, Du W Q, Li J W, et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication[J]. Sci Rep, 2016, 6: 19989. doi: 10.1038/srep19989

    CrossRef Google Scholar

    [63] Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light Sci Appl, 2017, 6(7): e17011. doi: 10.1038/lsa.2017.11

    CrossRef Google Scholar

    [64] Pan D, Liu S L, Li J W, et al. Rapid fabrication of 3D chiral microstructures by single exposure of interfered femtosecond vortex beams and capillary‐force‐assisted self‐assembly[J]. Adv Funct Mater, 2022, 32(4): 2106917. doi: 10.1002/adfm.202106917

    CrossRef Google Scholar

    [65] Xin C, Yang L, Li J W, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery[J]. Adv Mater, 2019, 31(25): 1808226. doi: 10.1002/adma.201808226

    CrossRef Google Scholar

    [66] Wang C W, Yang L, Hu Y L, et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects[J]. ACS Nano, 2019, 13(4): 4667−4676. doi: 10.1021/acsnano.9b00893

    CrossRef Google Scholar

    [67] Xu B, Ji S Y, Pan D, et al. Hybrid femtosecond laser fabrication of a size-tunable microtrap chip with a high-trapping retention rate[J]. Opt Lett, 2020, 45(5): 1071−1074. doi: 10.1364/OL.386095

    CrossRef Google Scholar

    [68] Pan D, Cai Z, Ji S Y, et al. Microtubes with complex cross section fabricated by C-shaped bessel laser beam for mimicking stomata that opens and closes rapidly[J]. ACS Appl Mater Interfaces, 2018, 10(42): 36369−36376. doi: 10.1021/acsami.8b11173

    CrossRef Google Scholar

    [69] Ji S Y, Yang L, Zhang C C, et al. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth[J]. Opt Lett, 2018, 43(15): 3514−3517. doi: 10.1364/OL.43.003514

    CrossRef Google Scholar

    [70] Li R, Jin D D, Pan D, et al. Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond bessel beam for in situ particle and cell manipulation[J]. ACS Nano, 2020, 14(5): 5233−5242. doi: 10.1021/acsnano.0c00381

    CrossRef Google Scholar

    [71] Yan L Y, Yang D, Gong Q H, et al. Rapid fabrication of continuous surface Fresnel microlens array by femtosecond laser focal field engineering[J]. Micromachines, 2020, 11(2): 112. doi: 10.3390/mi11020112

    CrossRef Google Scholar

    [72] Yang D, Liu L P, Gong Q H, et al. Rapid two‐photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering[J]. Macromol Rapid Commun, 2019, 40(8): 1900041. doi: 10.1002/marc.201900041

    CrossRef Google Scholar

    [73] Chu W, Tan Y X, Wang P, et al. Centimeter‐height 3D printing with femtosecond laser two‐photon polymerization[J]. Adv Mater Technol, 2018, 3(5): 1700396. doi: 10.1002/admt.201700396

    CrossRef Google Scholar

    [74] Wang P, Chu W, Li W B, et al. Three-dimensional laser printing of macro-scale glass objects at a micro-scale resolution[J]. Micromachines, 2019, 10(9): 565. doi: 10.3390/mi10090565

    CrossRef Google Scholar

    [75] Uesugi Y, Fukushima R, Saitoh K, et al. Creating electron phase holograms using femtosecond laser interference processing[J]. Opt Express, 2019, 27(15): 20958−20964. doi: 10.1364/OE.27.020958

    CrossRef Google Scholar

    [76] Li B H, Jiang L, Li X W, et al. Flexible gray‐scale surface patterning through spatiotemporal‐interference‐based femtosecond laser shaping[J]. Adv Opt Mater, 2018, 6(24): 1801021. doi: 10.1002/adom.201801021

    CrossRef Google Scholar

    [77] Wang M M, Guo Q T, Wang S M, et al. Interference femtosecond laser stamping of micro-grating structures and time-resolved observation of its dynamics[J]. Opt Express, 2020, 28(12): 18376−18386. doi: 10.1364/OE.390012

    CrossRef Google Scholar

    [78] Wu H, Jiao Y L, Zhang C C, et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography[J]. Nanoscale, 2019, 11(11): 4803−4810. doi: 10.1039/C8NR09747J

    CrossRef Google Scholar

    [79] Nakata Y, Murakawa K, Miyanaga N, et al. Local melting of gold thin films by femtosecond laser-interference processing to generate nanoparticles on a source target[J]. Nanomaterials, 2018, 8(7): 477. doi: 10.3390/nano8070477

    CrossRef Google Scholar

    [80] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light Sci Appl, 2018, 7: 85. doi: 10.1038/s41377-018-0078-x

    CrossRef Google Scholar

    [81] Nagelberg S, Zarzar L D, Nicolas N, et al. Reconfigurable and responsive droplet-based compound micro-lenses[J]. Nat Commun, 2017, 8: 14673. doi: 10.1038/ncomms14673

    CrossRef Google Scholar

    [82] Thiele S, Arzenbacher K, Gissibl T, et al. 3D-printed eagle eye: compound microlens system for foveated imaging[J]. Sci Adv, 2017, 3(2): e1602655. doi: 10.1126/sciadv.1602655

    CrossRef Google Scholar

    [83] Deng Z F, Chen F, Yang Q, et al. Dragonfly‐eye‐inspired artificial compound eyes with sophisticated imaging[J]. Adv Funct Mater, 2016, 26(12): 1995−2001. doi: 10.1002/adfm.201504941

    CrossRef Google Scholar

    [84] Hu Y L, Rao S L, Wu S Z, et al. All‐glass 3D optofluidic microchip with built‐in tunable microlens fabricated by femtosecond laser‐assisted etching[J]. Adv Opt Mater, 2018, 6(9): 1701299. doi: 10.1002/adom.201701299

    CrossRef Google Scholar

    [85] Deng Z F, Yang Q, Chen F, et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Opt Lett, 2015, 40(9): 1928−1931. doi: 10.1364/OL.40.001928

    CrossRef Google Scholar

    [86] Liu X Q, Chen Q D, Guan K M, et al. Dry‐etching‐assisted femtosecond laser machining[J]. Laser Photonics Rev, 2017, 11(3): 1600115. doi: 10.1002/lpor.201600115

    CrossRef Google Scholar

    [87] Wang B X, Qi J Y, Lu Y M, et al. Rapid fabrication of smooth micro-optical components on glass by etching-assisted femtosecond laser modification[J]. Materials, 2022, 15(2): 678. doi: 10.3390/ma15020678

    CrossRef Google Scholar

    [88] Sala F, Paié P, Martínez Vázquez R, et al. Effects of thermal annealing on femtosecond laser micromachined glass surfaces[J]. Micromachines, 2021, 12(2): 180. doi: 10.3390/mi12020180

    CrossRef Google Scholar

    [89] Cao X W, Chen Q D, Zhang L, et al. Single-pulse writing of a concave microlens array[J]. Opt Lett, 2018, 43(4): 831−834. doi: 10.1364/OL.43.000831

    CrossRef Google Scholar

    [90] Yang Q, Tong S Y, Chen F, et al. Lens-on-lens microstructures[J]. Opt Lett, 2015, 40(22): 5359−5362. doi: 10.1364/OL.40.005359

    CrossRef Google Scholar

    [91] Sohn I B, Choi H K, Noh Y C, et al. Laser assisted fabrication of micro-lens array and characterization of their beam shaping property[J]. Appl Surf Sci, 2019, 479: 375−385. doi: 10.1016/j.apsusc.2019.02.083

    CrossRef Google Scholar

    [92] Chen Z H, Yuan H B, Wu P C, et al. Variable focus convex microlens array on K9 glass substrate based on femtosecond laser processing and hot embossing lithography[J]. Opt Lett, 2022, 47(1): 22−25. doi: 10.1364/OL.448344

    CrossRef Google Scholar

    [93] Sun Y L, Dong W F, Yang R Z, et al. Dynamically tunable protein microlenses[J]. Angew Chem Int Ed, 2012, 51(7): 1558−1562. doi: 10.1002/anie.201105925

    CrossRef Google Scholar

    [94] Sun Y L, Hou Z S, Sun S M, et al. Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness[J]. Sci Rep, 2015, 5: 12852. doi: 10.1038/srep12852

    CrossRef Google Scholar

    [95] Zhang H R, Yang F Y, Dong J J, et al. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation[J]. Nat Commun, 2016, 7: 13743. doi: 10.1038/ncomms13743

    CrossRef Google Scholar

    [96] Florian C, Piazza S, Diaspro A, et al. Direct laser printing of tailored polymeric microlenses[J]. ACS Appl Mater Interfaces, 2016, 8(27): 17028−17032. doi: 10.1021/acsami.6b05385

    CrossRef Google Scholar

    [97] Zheng C, Hu A M, Kihm K D, et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super‐wide angle imaging[J]. Small, 2015, 11(25): 3007−3016. doi: 10.1002/smll.201403419

    CrossRef Google Scholar

    [98] Gissibl T, Thiele S, Herkommer A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nat Photonics, 2016, 10(8): 554−560. doi: 10.1038/nphoton.2016.121

    CrossRef Google Scholar

    [99] Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electron Adv, 2020, 3(10): 190042. doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [100] Thomas J, Heinrich M, Zeil P, et al. Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform[J]. Phys Status Solidi A, 2011, 208(2): 276−283. doi: 10.1002/pssa.201026452

    CrossRef Google Scholar

    [101] Lv J M, Cheng Y Z, Yuan W H, et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal[J]. Opt Mater Express, 2015, 5(6): 1274−1280. doi: 10.1364/OME.5.001274

    CrossRef Google Scholar

    [102] Zhang B, Xiong B C, Li Z Q, et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses[J]. Opt Mater, 2018, 86: 571−575. doi: 10.1016/j.optmat.2018.11.001

    CrossRef Google Scholar

    [103] Chen F, Vázquez de Aldana J R. Laser-written 3D crystalline photonic devices[EB/OL]. SPIE Newsroom, 2015: 1−4. (2015-07-24). https://doi.org/10.1117/2.1201507.006006.

    Google Scholar

    [104] Siebenmorgen J, Petermann K, Huber G, et al. Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser[J]. Appl Phys B, 2009, 97(2): 251−255. doi: 10.1007/s00340-009-3697-3

    CrossRef Google Scholar

    [105] Chen F, de Aldana J R V. Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining[J]. Laser Photonics Rev, 2014, 8(2): 251−275. doi: 10.1002/lpor.201300025

    CrossRef Google Scholar

    [106] Feng T, Sahoo P K, Arteaga-Sierra F R, et al. Pulse-propagation modeling and experiment for femtosecond-laser writing of waveguide in Nd: YAG[J]. Crystals, 2019, 9(8): 434. doi: 10.3390/cryst9080434

    CrossRef Google Scholar

    [107] Calmano T, Kränkel C, Huber G. Laser oscillation in Yb: YAG waveguide beam-splitters with variable splitting ratio[J]. Opt Lett, 2015, 40(8): 1753−1756. doi: 10.1364/OL.40.001753

    CrossRef Google Scholar

    [108] Li L Q, Nie W J, Li Z Q, et al. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band[J]. Opt Express, 2017, 25(20): 24236−24241. doi: 10.1364/OE.25.024236

    CrossRef Google Scholar

    [109] Nguyen H D, Ródenas A, de Aldana J R V, et al. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides[J]. Opt Express, 2016, 24(7): 7777−7791. doi: 10.1364/OE.24.007777

    CrossRef Google Scholar

    [110] Jia Y C, He R Y, de Aldana J R V, et al. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers[J]. Opt Express, 2019, 27(21): 30941−30951. doi: 10.1364/OE.27.030941

    CrossRef Google Scholar

    [111] Li G L, Zhang B, Sun L F, et al. Femtosecond laser micromachining of cladding waveguides in KTiOAsO4 crystal for second‐harmonic generation[J]. Phys Status Solidi Rapid Res Lett, 2021, 15(11): 2100345. doi: 10.1002/pssr.202100345

    CrossRef Google Scholar

    [112] Sun X Y, Zeng L, Du H F, et al. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings[J]. Opt Laser Technol, 2020, 124: 105969. doi: 10.1016/j.optlastec.2019.105969

    CrossRef Google Scholar

    [113] Jiang Y J, Yuan Y, Xu J, et al. Phase-shifted fiber Bragg grating inscription by fusion splicing technique and femtosecond laser[J]. Opt Laser Eng, 2016, 86: 236−241. doi: 10.1016/j.optlaseng.2016.06.011

    CrossRef Google Scholar

    [114] He J, Wang Y P, Liao C R, et al. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration[J]. Sci Rep, 2016, 6: 23379. doi: 10.1038/srep23379

    CrossRef Google Scholar

    [115] He J, Wang Y P, Liao C R, et al. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser[J]. Opt Lett, 2015, 40(9): 2008−2011. doi: 10.1364/OL.40.002008

    CrossRef Google Scholar

    [116] Yang K M, Liao C R, Liu S, et al. Optical fiber tag based on an encoded fiber Bragg grating fabricated by femtosecond laser[J]. J Lightwave Technol, 2020, 38(6): 1474−1479. doi: 10.1109/JLT.2019.2956178

    CrossRef Google Scholar

    [117] Liao C R, Li C, Wang C, et al. High-speed all-optical modulator based on a polymer nanofiber Bragg grating printed by femtosecond laser[J]. ACS Appl Mater Interfaces, 2020, 12(1): 1465−1473. doi: 10.1021/acsami.9b16716

    CrossRef Google Scholar

    [118] Mihailov S J, Grobnic D, Hnatovsky C, et al. Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings[J]. Sensors, 2017, 17(12): 2909. doi: 10.3390/s17122909

    CrossRef Google Scholar

    [119] Guo Q, Yu Y S, Zheng Z M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Trans Nanotechnol, 2019, 18: 208−211. doi: 10.1109/TNANO.2018.2888536

    CrossRef Google Scholar

    [120] Zhang F, Yu Y, Cheng C, et al. Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing[J]. Appl Phys B, 2014, 117(1): 53−58. doi: 10.1007/s00340-014-5797-y

    CrossRef Google Scholar

    [121] Bonse J, Gräf S. Maxwell meets marangoni—a review of theories on laser‐induced periodic surface structures[J]. Laser Photonics Rev, 2020, 14(10): 2000215. doi: 10.1002/lpor.202000215

    CrossRef Google Scholar

    [122] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Appl Phys Lett, 2008, 92(4): 041914. doi: 10.1063/1.2834902

    CrossRef Google Scholar

    [123] Serkov A A, Shafeev G A, Barmina E V, et al. Stainless steel surface wettability control via laser ablation in external electric field[J]. Appl Phys A, 2016, 122(12): 1067. doi: 10.1007/s00339-016-0595-5

    CrossRef Google Scholar

    [124] Bonse J, Krüger J, Höhm S, et al. Femtosecond laser-induced periodic surface structures[J]. J Laser Appl, 2012, 24(4): 042006. doi: 10.2351/1.4712658

    CrossRef Google Scholar

    [125] Höhm S, Herzlieb M, Rosenfeld A, et al. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation[J]. Appl Phys Lett, 2013, 103(25): 254101. doi: 10.1063/1.4850528

    CrossRef Google Scholar

    [126] De La Cruz A R, Lahoz R, Siegel J, et al. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser[J]. Opt Lett, 2014, 39(8): 2491−2494. doi: 10.1364/OL.39.002491

    CrossRef Google Scholar

    [127] Feng P, Jiang L, Li X, et al. Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures[J]. Appl Opt, 2015, 54(6): 1314−1319. doi: 10.1364/AO.54.001314

    CrossRef Google Scholar

    [128] Dostovalov A, Bronnikov K, Korolkov V, et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications[J]. Nanoscale, 2020, 12(25): 13431−13441. doi: 10.1039/D0NR02182B

    CrossRef Google Scholar

    [129] Huang J, Jiang L, Li X W, et al. Cylindrically focused nonablative femtosecond laser processing of long‐range uniform periodic surface structures with tunable diffraction efficiency[J]. Adv Opt Mater, 2019, 7(20): 1900706. doi: 10.1002/adom.201900706

    CrossRef Google Scholar

    [130] Chen Q D, Lin X F, Niu L G, et al. Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization[J]. Opt Lett, 2008, 33(21): 2559−2561. doi: 10.1364/OL.33.002559

    CrossRef Google Scholar

    [131] Cai Z, Liu Y, Hu Y L, et al. Generation of colorful Airy beams and Airy imaging of letters via two-photon processed cubic phase plates[J]. Opt Lett, 2018, 43(5): 1151−1154. doi: 10.1364/OL.43.001151

    CrossRef Google Scholar

    [132] Machida M, Nakajima Y, Torres-Mapa M L, et al. Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser[J]. Sci Rep, 2018, 8(1): 187. doi: 10.1038/s41598-017-17636-z

    CrossRef Google Scholar

    [133] Seifert G, Kaempfe M, Syrowatka F, et al. Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass[J]. Appl Phys A, 2005, 81(4): 799−803. doi: 10.1007/s00339-004-2867-8

    CrossRef Google Scholar

    [134] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett, 1987, 58(23): 2486−2489. doi: 10.1103/PhysRevLett.58.2486

    CrossRef Google Scholar

    [135] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059−2062. doi: 10.1103/PhysRevLett.58.2059

    CrossRef Google Scholar

    [136] Bauser H C, Bukowsky C R, Phelan M, et al. Photonic crystal waveguides for > 90% light trapping efficiency in luminescent solar concentrators[J]. ACS Photonics, 2020, 7(8): 2122−2131. doi: 10.1021/acsphotonics.0c00593

    CrossRef Google Scholar

    [137] Li M X, Ling J W, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nat Commun, 2020, 11: 4123. doi: 10.1038/s41467-020-17950-7

    CrossRef Google Scholar

    [138] Zhou T J, Tang M C, Xiang G H, et al. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001)[J]. Nat Commun, 2020, 11(1): 977. doi: 10.1038/s41467-020-14736-9

    CrossRef Google Scholar

    [139] Fenzl C, Hirsch T, Wolfbeis O S. Photonic crystals for chemical sensing and biosensing[J]. Angew Chem Int Ed, 2014, 53(13): 3318−3335. doi: 10.1002/anie.201307828

    CrossRef Google Scholar

    [140] Sun H B, Matsuo S, Misawa H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Appl Phys Lett, 1999, 74(6): 786−788. doi: 10.1063/1.123367

    CrossRef Google Scholar

    [141] Straub M, Gu M. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization[J]. Opt Lett, 2002, 27(20): 1824−1826. doi: 10.1364/OL.27.001824

    CrossRef Google Scholar

    [142] Guo R, Li Z Y, Jiang Z W, et al. Log-pile photonic crystal fabricated by two-photon photopolymerization[J]. J Opt A Pure Appl Opt, 2005, 7(8): 396−399. doi: 10.1088/1464-4258/7/8/008

    CrossRef Google Scholar

    [143] Mizeikis V, Juodkazis S, Tarozaitė R, et al. Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region[J]. Opt Express, 2007, 15(13): 8454−8464. doi: 10.1364/OE.15.008454

    CrossRef Google Scholar

    [144] Deubel M, Von Freymann G, Wegener M, et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nat Mater, 2004, 3(7): 444−447. doi: 10.1038/nmat1155

    CrossRef Google Scholar

    [145] Wu J, Day D, Gu M. A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal[J]. Appl Phys Lett, 2008, 92(7): 071108. doi: 10.1063/1.2840700

    CrossRef Google Scholar

    [146] Liu Y J, Wang H, Ho J, et al. Structural color three-dimensional printing by shrinking photonic crystals[J]. Nat Commun, 2019, 10(1): 4340. doi: 10.1038/s41467-019-12360-w

    CrossRef Google Scholar

    [147] Seet K K, Mizeikis V, Juodkazis S, et al. Three-dimensional circular spiral photonic crystal structures recorded by femtosecond pulses[J]. J Non-Cryst Solids, 2006, 352(23-25): 2390−2394. doi: 10.1016/j.jnoncrysol.2006.02.079

    CrossRef Google Scholar

    [148] Raut H K, Wang H, Ruan Q F, et al. Hierarchical colorful structures by three-dimensional printing of inverse opals[J]. Nano Lett, 2021, 21(20): 8602−8608. doi: 10.1021/acs.nanolett.1c02483

    CrossRef Google Scholar

    [149] Wei D Z, Wang C W, Wang H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nat Photonics, 2018, 12(10): 596−600. doi: 10.1038/s41566-018-0240-2

    CrossRef Google Scholar

    [150] Wei D Z, Wang C W, Xu X Y, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nat Commun, 2019, 10(1): 4193. doi: 10.1038/s41467-019-12251-0

    CrossRef Google Scholar

    [151] Liu S, Switkowski K, Xu C L, et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals[J]. Nat Commun, 2019, 10(1): 3208. doi: 10.1038/s41467-019-11114-y

    CrossRef Google Scholar

    [152] Xu T X, Switkowski K, Chen X, et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate[J]. Nat Photonics, 2018, 12(10): 591−595. doi: 10.1038/s41566-018-0225-1

    CrossRef Google Scholar

  • Currently, the development of semiconductor technology based on electrons has reached its physical limit, and the further reduced size of semiconductor devices will bring about the problems such as excessive power consumption. To solve the above-mentioned problems, information technology based on photons stands out for its fast response time, high storage capacity, strong parallel processing capability, and low power consumption. However, traditional optical devices are generally large in size, so the optical system composed of such devices is quite bulky and in lack of flexibility, which greatly increases the difficulty of optical system integration. The development of micro-optics theory makes the integration of optical devices possible. Optical devices on multiple scales have shown the performance no less than that of traditional optical devices, which not only substantially promotes the miniaturization of optical system but also puts forward higher requirements for the micromachining precision.

    Laser, as a non-contact, high-energy, non-polluting, and automatic processing tool, holds various applications in material processing, wide-bandwidth communication, optical devices, data storage and other important industrial fields, and has been widely concerned by industry insider. Compared with traditional long-pulse or continuous laser processing technology, femtosecond laser exhibits various advantages such as ultrashort pulse width, ultrahigh peak power, and ultralow thermal effect, thus making itself a more advanced micro/nano processing tool.

    Because of the threshold effect of two-photon polymerization (TPP) and the Gaussian distribution of femtosecond laser after being focused by the objective lens, TPP can theoretically achieve three-dimensional resolution beyond the diffraction limit if the light intensity at the center of the focus is just slightly greater than that of the two-photon ionization threshold. Based on the above-mentioned theory, femtosecond laser can actually fabricate arbitrary micro/nano 3D structures in the circumstances of point-by-point scanning. Other than TPP, the interaction between electrons and ion subsystems during the ultrashort-pulse laser processing of metal or semiconductor is mostly analyzed by the Double-Temperature Equation (DTE). Based on the DTE, femtosecond laser has been employed to drill holes or achieve arbitrary patterning on metal surface. When ultrashort-pulse laser interacts with dielectric materials, precise reduction of material can be achieved through "avalanche ionization" triggered by multi-photon ionization or tunneling ionization. Based on the above-mentioned theory, femtosecond laser can actually process any material in practice.

    Therefore, in this review, the principle and advantages of femtosecond laser as well as its application in the micro/nano processing of optical device are discussed in detail. This review is divided into five sections. The first section introduces the mechanism and processing properties of femtosecond laser. The second section discusses a variety of methods to improve the resolution of femtosecond laser micromachining. The third section focuses on the femtosecond laser processing technology, and the fourth section describes the femtosecond laser's application in the processing of optical devices, including microlens, optical waveguide, grating, and photonic crystals. Finally, this review makes a summary and discusses the prospect of femtosecond laser micromachining used in optical devices.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Article Metrics

Article views(10240) PDF downloads(1208) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint