Zhang C, Wen T, Liu Z Z, et al. Research and application advances of photo-responsive droplet manipulation functional surface[J]. Opto-Electron Eng, 2023, 50(3): 220326. doi: 10.12086/oee.2023.220326
Citation: Zhang C, Wen T, Liu Z Z, et al. Research and application advances of photo-responsive droplet manipulation functional surface[J]. Opto-Electron Eng, 2023, 50(3): 220326. doi: 10.12086/oee.2023.220326

Research and application advances of photo-responsive droplet manipulation functional surface

    Fund Project: National Major Scientific Research Instrument Development Project of China (51927804), National Natural Science Foundation of China (62275216, 61378083, 61405159, 11504294), Cultivated project for Major Research of National Natural Science Foundation of China (91123030), and Science and Technology Innovation Team Project of Shaanxi Province (S2018-ZC-TD-0061)
More Information
  • Functional surface with specific wettability is one of the indispensable means for droplet manipulation. In recent years, the photo-responsive functional surface with changeable wettability has developed fast. By inducing wetting gradient force, mechanical deformation, phase transformation, dielectric electrophoresis force and electro wettability alteration on the material surface, the behavior of the droplets can be controllably manipulated by the photo-responsive functional surface. In this paper, the development of the photo-responsive functional surface for the droplet manipulation was briefly reviewed. The principles and mechanisms of the droplet manipulation with the functional surface had been expatiated. The categories, structural characteristics and corresponding preparation techniques of the functional surface were analyzed and summarized. In addition, the applications of the photo-responsive functional surface in droplet transportation, fusion, fission, liquid robot, and fluidic chips were introduced in detail. The development tendency and potential applications of the photo-responsive droplet manipulation functional surface were prospected in combination with the characteristics of the functional surface.
  • 加载中
  • [1] 徐广春, 顾中言, 徐德进, 等. 稻叶表面特性及雾滴在倾角稻叶上的沉积行为[J]. 中国农业科学, 2014, 47(21): 4280−4290. doi: 10.3864/j.issn.0578-1752.2014.21.013

    CrossRef Google Scholar

    Xu G C, Gu Z Y, Xu D J, et al. Characteristics of rice leaf surface and droplets deposition behavior on rice leaf surface with different inclination angles[J]. Sci Agric Sin, 2014, 47(21): 4280−4290. doi: 10.3864/j.issn.0578-1752.2014.21.013

    CrossRef Google Scholar

    [2] Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7): 85−89. doi: 10.1038/nature17189

    CrossRef Google Scholar

    [3] Cheng Q F, Li M Z, Zheng Y M, et al. Janus interface materials: Superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf[J]. Soft Matter, 2011, 7(13): 5948−5951. doi: 10.1039/c1sm05452j

    CrossRef Google Scholar

    [4] Lu Y, Sathasivam S, Song J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226): 1132−1135. doi: 10.1126/science.aaa0946

    CrossRef Google Scholar

    [5] Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. J Mater Chem A, 2017, 5(1): 31−55. doi: 10.1039/C6TA07984A

    CrossRef Google Scholar

    [6] Li X J, Jiang C M, Zhao F N, et al. A self-charging device with bionic self-cleaning interface for energy harvesting[J]. Nano Energy, 2020, 73: 104738. doi: 10.1016/j.nanoen.2020.104738

    CrossRef Google Scholar

    [7] Sun G, Fang Y, Cong Q, et al. Anisotropism of the non-smooth surface of butterfly wing[J]. J Bionic Eng, 2009, 6(1): 71−76. doi: 10.1016/S1672-6529(08)60094-3

    CrossRef Google Scholar

    [8] Mei M, Luo D, Guo P, et al. Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency[J]. Soft Matter, 2011, 7(22): 10569−10573. doi: 10.1039/c1sm06347b

    CrossRef Google Scholar

    [9] Ju J, Zheng Y M, Jiang L. Bioinspired one-dimensional materials for directional liquid transport[J]. Acc Chem Res, 2014, 47(8): 2342−2352. doi: 10.1021/ar5000693

    CrossRef Google Scholar

    [10] Ju J, Bai H, Zheng Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat Commun, 2012, 3: 1247. doi: 10.1038/ncomms2253

    CrossRef Google Scholar

    [11] Bai F, Wu J T, Gong G M, et al. Biomimetic “cactus spine” with hierarchical groove structure for efficient fog collection[J]. Adv Sci, 2015, 2(7): 1500047. doi: 10.1002/advs.201500047

    CrossRef Google Scholar

    [12] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33−34. doi: 10.1038/35102108

    CrossRef Google Scholar

    [13] Nørgaard T, Dacke M. Fog-basking Behaviour and water collection efficiency in Namib desert darkling beetles[J]. Front Zool, 2010, 7: 23. doi: 10.1186/1742-9994-7-23

    CrossRef Google Scholar

    [14] Guadarrama-Cetina J, Mongruel A, Medici M G, et al. Dew condensation on desert beetle skin[J]. Eur Phys J E, 2014, 37(11): 109. doi: 10.1140/epje/i2014-14109-y

    CrossRef Google Scholar

    [15] Chiou P Y, Moon H, Toshiyoshi H, et al. Light actuation of liquid by optoelectrowetting[J]. Sens Actuators A Phys, 2003, 104(3): 222−228. doi: 10.1016/S0924-4247(03)00024-4

    CrossRef Google Scholar

    [16] Huang G Y, Li M X, Yang Q Z, et al. Magnetically actuated droplet manipulation and its potential biomedical applications[J]. ACS Appl Mater Interfaces, 2017, 9(2): 1155−1166. doi: 10.1021/acsami.6b09017

    CrossRef Google Scholar

    [17] Lv P, Zhang Y L, Han D D, et al. Directional droplet transport on functional surfaces with superwettabilities[J]. Adv Mater Interfaces, 2021, 8(12): 2100043. doi: 10.1002/admi.202100043

    CrossRef Google Scholar

    [18] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Adv Mater, 2002, 14(24): 1857−1860. doi: 10.1002/adma.200290020

    CrossRef Google Scholar

    [19] Zhang S N, Huang J Y, Chen Z, et al. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications[J]. Small, 2017, 13(3): 1602992. doi: 10.1002/smll.201602992

    CrossRef Google Scholar

    [20] Li S H, Li H J, Wang X B, et al. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes[J]. J Phys Chem B, 2002, 106(36): 9274−9276. doi: 10.1021/jp0209401

    CrossRef Google Scholar

    [21] Yang J T, Chen J C, Huang K J, et al. Droplet manipulation on a hydrophobic textured surface with roughened patterns[J]. J Microelectromech Syst, 2006, 15(3): 697−707. doi: 10.1109/JMEMS.2006.876791

    CrossRef Google Scholar

    [22] Zheng Y M, Bai H, Huang Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640−643. doi: 10.1038/nature08729

    CrossRef Google Scholar

    [23] Ghosh A, Ganguly R, Schutzius T M, et al. Wettability patterning for high-rate, Pumpless fluid transport on open, non-planar microfluidic platforms[J]. Lab Chip, 2014, 14(9): 1538−1550. doi: 10.1039/C3LC51406D

    CrossRef Google Scholar

    [24] Li A, Li H Z, Li Z, et al. Programmable droplet manipulation by a magnetic-actuated robot[J]. Sci Adv, 2020, 6(7): eaay5808. doi: 10.1126/sciadv.aay5808

    CrossRef Google Scholar

    [25] Gao A T, Butt H J, Steffen W, et al. Optical manipulation of liquids by thermal Marangoni flow along the air−water interfaces of a superhydrophobic surface[J]. Langmuir, 2021, 37(29): 8677−8686. doi: 10.1021/acs.langmuir.1c00539

    CrossRef Google Scholar

    [26] Malvadkar N A, Hancock M J, Sekeroglu K, et al. An engineered anisotropic Nanofilm with unidirectional wetting properties[J]. Nat Mater, 2010, 9(12): 1023−1028. doi: 10.1038/nmat2864

    CrossRef Google Scholar

    [27] Tian D L, Zhang N, Zheng X, et al. Fast responsive and controllable liquid transport on a magnetic fluid/Nanoarray composite interface[J]. ACS Nano, 2016, 10(6): 6220−6226. doi: 10.1021/acsnano.6b02318

    CrossRef Google Scholar

    [28] Cheng Z J, Zhang D J, Lv T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Adv Funct Mater, 2018, 28(7): 1705002. doi: 10.1002/adfm.201705002

    CrossRef Google Scholar

    [29] Rao Q Q, Li A, Zhang J W, et al. Multi-functional fluorinated ionic liquid infused slippery surfaces with dual-responsive wettability switching and self-repairing[J]. J Mater Chem A, 2019, 7(5): 2172−2183. doi: 10.1039/C8TA08956F

    CrossRef Google Scholar

    [30] Yang D Q, Piech M, Bell N, et al. Photon control of liquid motion on reversibly photoresponsive surfaces[J]. Langmuir, 2007, 23(21): 10864−10872. doi: 10.1021/la701507r

    CrossRef Google Scholar

    [31] Diguet A, Guillermic R M, Magome N, et al. Photomanipulation of a droplet by the chromocapillary effect[J]. Angew Chem Int Ed, 2009, 48(49): 9281−9284. doi: 10.1002/anie.200904868

    CrossRef Google Scholar

    [32] Ichikawa M, Takabatake F, Miura K, et al. Controlling negative and positive photothermal migration of centimeter-sized droplets[J]. Phys Rev E, 2013, 88(1): 012403. doi: 10.1103/PhysRevE.88.012403

    CrossRef Google Scholar

    [33] Kwon G, Panchanathan D, Mahmoudi S R et al. Visible light guided manipulation of liquid wettability on photoresponsive surfaces[J]. Nat Commun, 2017, 8(1): 14968. doi: 10.1038/ncomms14968

    CrossRef Google Scholar

    [34] Siewierski L M, Brittain W J, Petrash S, et al. Photoresponsive monolayers containing in-chain azobenzene[J]. Langmuir, 1996, 12(24): 5838−5844. doi: 10.1021/la960506o

    CrossRef Google Scholar

    [35] Ichimura K, Oh S K, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface[J]. Science, 2000, 288(5471): 1624−1626. doi: 10.1126/science.288.5471.1624

    CrossRef Google Scholar

    [36] Berná J, Leigh D A, Lubomska M, et al. Macroscopic transport by synthetic molecular machines[J]. Sci Mater, 2005, 4(9): 704−710. doi: 10.1038/nmat1455

    CrossRef Google Scholar

    [37] Wang J, Gao W, Zhang H, et al. Programmable wettability on photocontrolled graphene film[J]. Sci Adv, 2018, 4(9): eaat7392. doi: 10.1126/sciadv.aat7392

    CrossRef Google Scholar

    [38] Wu S Z, Zhou L L, Chen C, et al. Photothermal actuation of diverse liquids on an Fe3O4-doped slippery surface for electric switching and cell culture[J]. Langmuir, 2019, 35(43): 13915−13922. doi: 10.1021/acs.langmuir.9b02068

    CrossRef Google Scholar

    [39] Li W, Tang X, Wang L Q. Photopyroelectric microfluidics[J]. Sci Adv, 2020, 6(38): eabc1693. doi: 10.1126/sciadv.abc1693

    CrossRef Google Scholar

    [40] Bai X, Yong J L, Shan C, et al. Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light[J]. Sci China Chem, 2021, 64(5): 861−872. doi: 10.1007/s11426-020-9940-6

    CrossRef Google Scholar

    [41] Gao C L, Wang L, Lin Y C, et al. Droplets manipulated on photothermal organogel surfaces[J]. Adv Funct Mater, 2018, 28(35): 1803072. doi: 10.1002/adfm.201803072

    CrossRef Google Scholar

    [42] Smith J D, Dhiman R, Anand S, et al. Droplet mobility on lubricant-impregnated surfaces[J]. Soft Matter, 2013, 9(6): 1772−1780. doi: 10.1039/C2SM27032C

    CrossRef Google Scholar

    [43] Chaudhury M K, Whitesides G M. How to make water run uphill[J]. Science, 1992, 256(5063): 1539−1541. doi: 10.1126/science.256.5063.1539

    CrossRef Google Scholar

    [44] Nikolov A D, Wasan D T, Chengaraa A, et al. Superspreading driven by Marangoni flow[J]. Adv Colloid Interface Sci, 2002, 96(1–3): 325−338. doi: 10.1016/S0001-8686(01)00087-2

    CrossRef Google Scholar

    [45] Jiao Z Z, Zhou H, Han X C, et al. Photothermal responsive slippery surfaces based on laser-structured graphene@PVDF composites[J]. J Colloid Interface Sci, 2023, 629: 582−592. doi: 10.1016/J.JCIS.2022.08.153

    CrossRef Google Scholar

    [46] Li Q, Wu D H, Guo Z G. Drop/bubble transportation and controllable manipulation on patterned slippery lubricant infused surfaces with tunable wettability[J]. Soft Matter, 2019, 15(34): 6803−6810. doi: 10.1039/C9SM01167F

    CrossRef Google Scholar

    [47] Chen C, Huang Z C, Jiao Y L, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage[J]. ACS Nano, 2019, 13(5): 5742−5752. doi: 10.1021/acsnano.9b01180

    CrossRef Google Scholar

    [48] Li W, Lei Y P, Chen R, et al. Light-caused droplet bouncing from a cavity trap-assisted superhydrophobic surface[J]. Langmuir, 2020, 36(37): 11068−11078. doi: 10.1021/acs.langmuir.0c02062

    CrossRef Google Scholar

    [49] Habault D, Zhang H J, Zhao Y. Light-triggered self-healing and shape-memory polymers[J]. Chem Soc Rev, 2013, 42(17): 7244−7256. doi: 10.1039/c3cs35489j

    CrossRef Google Scholar

    [50] Li Z, Zhang X Y, Wang S Q, et al. Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization[J]. Chem Sci, 2016, 7(7): 4741−4747. doi: 10.1039/C6SC00584E

    CrossRef Google Scholar

    [51] Puerto A, Méndez A, Arizmendi L, et al. Optoelectronic manipulation, trapping, splitting, and merging of water droplets and aqueous biodroplets based on the bulk photovoltaic effect[J]. Phys Rev Appl, 2020, 14(2): 024046. doi: 10.1103/PhysRevApplied.14.024046

    CrossRef Google Scholar

    [52] Arizmendi L. Photonic applications of lithium niobate crystals[J]. Phys Status Solidi (A), 2004, 201(2): 253−283. doi: 10.1002/pssa.200303911

    CrossRef Google Scholar

    [53] Yan W S, Zhao C P, Luo W Y, et al. Optically guided pyroelectric manipulation of water droplet on a superhydrophobic surface[J]. ACS Appl Mater Interfaces, 2021, 13(19): 23181−23190. doi: 10.1021/acsami.1c03407

    CrossRef Google Scholar

    [54] Thio S K, Bae S, Park S Y. Plasmonic nanoparticle-enhanced optoelectrowetting (OEW) for effective light-driven droplet manipulation[J]. Sens Actuators B Chem, 2020, 308: 127704. doi: 10.1016/j.snb.2020.127704

    CrossRef Google Scholar

    [55] Ashkin A, Dziedzic J M. Radiation pressure on a free liquid surface[J]. Phys Rev Lett, 1973, 30(4): 139−142. doi: 10.1103/PhysRevLett.30.139

    CrossRef Google Scholar

    [56] Han K Y, Wang Z B, Heng L P, et al. Photothermal slippery surfaces towards spatial droplet manipulation[J]. J Mater Chem A, 2021, 9(31): 16974−16981. doi: 10.1039/D1TA04243B

    CrossRef Google Scholar

    [57] Paula K T, Silva K L C, Mattos A V A, et al. Controlling surface wettability in methacrylic copolymer containing azobenzene by fs-laser microstructuring[J]. Opt Mater, 2021, 116: 111083. doi: 10.1016/j.optmat.2021.111083

    CrossRef Google Scholar

    [58] Milles S, Dahms J, Voisiat B, et al. Wetting properties of aluminium surface structures fabricated using direct laser interference patterning with picosecond and femtosecond pulses[J]. J Laser Micro/Nanoeng, 2021, 16(1): 74−79. doi: 10.2961/jlmn.2021.01.3001

    CrossRef Google Scholar

    [59] Dou H Q, Liu H, Xu S Z, et al. Influence of laser Fluences and scan speeds on the morphologies and wetting properties of titanium alloy[J]. Optik, 2020, 224: 165443. doi: 10.1016/j.ijleo.2020.165443

    CrossRef Google Scholar

    [60] 杨青, 成扬, 方政, 等. 仿生超滑表面的飞秒激光微纳制造及应用[J]. 光电工程, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326

    CrossRef Google Scholar

    Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-Nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326

    CrossRef Google Scholar

    [61] Chiou P Y, Chang Z H, Wu M C. Droplet manipulation with light on optoelectrowetting device[J]. J Microelectromech Syst, 2008, 17(1): 133−138. doi: 10.1109/JMEMS.2007.904336

    CrossRef Google Scholar

    [62] Venancio-Marques A, Baigl D. Digital optofluidics: LED-gated transport and fusion of microliter-sized organic droplets for chemical synthesis[J]. Langmuir, 2014, 30(15): 4207−4212. doi: 10.1021/la5001254

    CrossRef Google Scholar

    [63] Lv J A, Liu Y Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619): 179−184. doi: 10.1038/nature19344

    CrossRef Google Scholar

    [64] Zhao Y Z, Su Y L, Hou X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electron Adv, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008

    CrossRef Google Scholar

    [65] 矫知真, 韩星尘, 周昊, 等. 光/电响应型超滑表面的激光加工制备[J]. 光电工程, 2022, 49(2): 210356. doi: 10.12086/oee.2022.210356

    CrossRef Google Scholar

    Jiao Z Z, Han X C, Zhou H, et al. Laser fabrication of light/voltage-responsive slippery liquid-infused porous substrate (SLIPS)[J]. Opto-Electron Eng, 2022, 49(2): 210356. doi: 10.12086/oee.2022.210356

    CrossRef Google Scholar

    [66] Tang X, Wang L Q. Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces[J]. ACS Nano, 2018, 12(9): 8994−9004. doi: 10.1021/acsnano.8b02470

    CrossRef Google Scholar

    [67] Huang T, Zhang L, Lao J C, et al. Reliable and low temperature actuation of water and oil slugs in Janus photothermal slippery tube[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17968−17974. doi: 10.1021/acsami.2c01205

    CrossRef Google Scholar

    [68] Sun Q Q, Wang D H, Li Y N, et al. Surface charge printing for programmed droplet transport[J]. Nat Mater, 2019, 18(9): 936−941. doi: 10.1038/s41563-019-0440-2

    CrossRef Google Scholar

    [69] Li J, Ha N S, Liu T L, et al. Ionic-surfactant-mediated electro-Dewetting for digital microfluidics[J]. Nature, 2019, 572(7770): 507−510. doi: 10.1038/s41586-019-1491-x

    CrossRef Google Scholar

    [70] Wang F, Liu M J, Liu C, et al. Light control of droplets on photo-induced charged surfaces[J]. Natl Sci Rev, 2023, 10(1): nwac164. doi: 10.1093/NSR/NWAC164

    CrossRef Google Scholar

    [71] Ren H T, Jin H, Shu J, et al. Light-controlled versatile manipulation of liquid metal droplets: a gateway to future liquid robots[J]. Mater Horiz, 2021, 8(11): 3063−3071. doi: 10.1039/d1mh00647a

    CrossRef Google Scholar

    [72] Paven M, Mayama H, Sekido T, et al. Light-driven delivery and release of materials using liquid marbles[J]. Adv Funct Mater, 2016, 26(19): 3199−3206. doi: 10.1002/adfm.201600034

    CrossRef Google Scholar

    [73] Nagy P T, Neitzel G P. Optical levitation and transport of Microdroplets: proof of concept[J]. Phys Fluids, 2008, 20(10): 101703. doi: 10.1063/1.3005394

    CrossRef Google Scholar

    [74] Park S Y, Chiou P Y. Light-driven droplet manipulation technologies for lab-on-a-chip applications[J]. Adv OptoElectron, 2011, 2011: 909174. doi: 10.1155/2011/909174

    CrossRef Google Scholar

    [75] Hu S W, Xu B Y, Ye W K, et al. Versatile microfluidic droplets array for bioanalysis[J]. ACS Appl Mater Interfaces, 2015, 7(1): 935−940. doi: 10.1021/am5075216

    CrossRef Google Scholar

    [76] Wang F, Liu M J, Liu C, et al. Light-induced charged slippery surfaces[J]. Sci Adv, 2022, 8(27): eabp9369. doi: 10.1126/sciadv.abp9369

    CrossRef Google Scholar

    [77] Coughlin S R. Thrombin Signalling and protease-activated receptors[J]. Nature, 2000, 407(6801): 258−264. doi: 10.1038/35025229

    CrossRef Google Scholar

    [78] Hemker H C, Giesen P L, Ramjee M, et al. The thrombogram: monitoring thrombin generation in platelet-rich plasma[J]. Thromb Haemost, 2000, 83(4): 589−591. doi: 10.1055/s-0037-1613868

    CrossRef Google Scholar

    [79] Thrivikraman G, Boda S K, Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective[J]. Biomaterials, 2018, 150: 60−86. doi: 10.1016/j.biomaterials.2017.10.003

    CrossRef Google Scholar

    [80] McCaig C D, Song B, Rajnicek A M. Electrical dimensions in cell science[J]. J Cell Sci, 2009, 122(23): 4267−4276. doi: 10.1242/jcs.023564

    CrossRef Google Scholar

    [81] Sun L Y, Bian F K, Wang Y, et al. Bioinspired programmable wettability arrays for droplets manipulation[J]. Proc Natl Acad Sci, 2020, 117(9): 4527−4532. doi: 10.1073/pnas.1921281117

    CrossRef Google Scholar

    [82] Chen C, Huang Z C, Shi L A, et al. Remote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4-doped surfaces[J]. Adv Funct Mater, 2019, 29(40): 1904766. doi: 10.1002/adfm.201904766

    CrossRef Google Scholar

    [83] Dai L G, Lin D J, Wang X D, et al. Integrated assembly and flexible movement of microparts using multifunctional bubble microrobots[J]. ACS Appl Mater Interfaces, 2020, 12(51): 57587−57597. doi: 10.1021/acsami.0c17518

    CrossRef Google Scholar

    [84] Hu M, Wang F, Chen L, et al. Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface[J]. Nat Commun, 2022, 13(1): 5749. doi: 10.1038/s41467-022-33424-4

    CrossRef Google Scholar

    [85] Čejková J, Banno T, Hanczyc M M, et al. Droplets as liquid robots[J]. Artif Life, 2017, 23(4): 528−549. doi: 10.1162/ARTL_a_00243

    CrossRef Google Scholar

    [86] Baigl D. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives[J]. Lab Chip, 2012, 12(19): 3637−3653. doi: 10.1039/c2lc40596b

    CrossRef Google Scholar

    [87] Bormashenko E, Pogreb R, Bormashenko Y, et al. New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces[J]. Langmuir, 2008, 24(21): 12119−12122. doi: 10.1021/la802355y

    CrossRef Google Scholar

    [88] Dorvee J R, Sailor M J, Miskelly G M, et al. Digital microfluidics and delivery of molecular payloads with magnetic porous silicon chaperones[J]. Dalton Trans, 2008(6): 721−730. doi: 10.1039/b714594b

    CrossRef Google Scholar

    [89] Goss C H, Kaneko Y, Khuu Y et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections[J]. Sci Transl Med, 2018, 10(460): eaat7520.

    Google Scholar

    [90] Fan X J, Dong X G, Karacakol A C, et al. Reconfigurable multifunctional ferrofluid droplet robots[J]. Proc Natl Acad Sci USA, 2020, 117(45): 27916−27926. doi: 10.1073/pnas.2016388117

    CrossRef Google Scholar

    [91] Markvicka E J, Bartlett M D, Huang X N, et al. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics[J]. Nat Mater, 2018, 17(7): 618−624. doi: 10.1038/s41563-018-0084-7

    CrossRef Google Scholar

    [92] Park S Y, Kalim S, Callahan C, et al. A light-induced dielectrophoretic droplet manipulation platform[J]. Lab Chip, 2009, 9(22): 3228−3235. doi: 10.1039/b909158k

    CrossRef Google Scholar

    [93] Park S Y, Teitell M A, Chiou E P Y. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns[J]. Lab Chip, 2010, 10(13): 1655−1661. doi: 10.1039/c001324b

    CrossRef Google Scholar

    [94] Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angew Chem Int Ed, 2006, 45(44): 7336−7356. doi: 10.1002/anie.200601554

    CrossRef Google Scholar

    [95] Wu Y C, Feng J G, Gao H F, et al. Superwettability-based interfacial chemical reactions[J]. Adv Mater, 2019, 31(8): 1800718. doi: 10.1002/adma.201800718

    CrossRef Google Scholar

    [96] Yang Z J, Wei J J, Sobolev Y I, et al. Systems of Mechanized and Reactive Droplets Powered by Multi-responsive Surfactants[J]. Nature, 2018, 553(7688): 313−318. doi: 10.1038/nature25137

    CrossRef Google Scholar

    [97] Wang Y, Jin R N, Shen B Q, et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics[J]. Sci Adv, 2021, 7(24): eabe3839. doi: 10.1126/sciadv.abe3839

    CrossRef Google Scholar

    [98] Mongera A, Rowghanian P, Gustafson H J, et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation[J]. Nature, 2018, 561(7723): 401−405. doi: 10.1038/s41586-018-0479-2

    CrossRef Google Scholar

    [99] Bawazer L A, McNally C S, Empson C J, et al. Combinatorial microfluidic droplet engineering for biomimetic material synthesis[J]. Sci Adv, 2016, 2(10): e1600567. doi: 10.1126/sciadv.1600567

    CrossRef Google Scholar

    [100] Sarkar M S K A, Donne S W, Evans G M. Hydrogen bubble flotation of silica[J]. Adv Powder Technol, 2010, 21(4): 412−418. doi: 10.1016/j.apt.2010.04.005

    CrossRef Google Scholar

    [101] Warnier M J F, De Croon M H J M, Rebrov E V, et al. Pressure drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluid Nanofluid, 2010, 8(1): 33−45. doi: 10.1007/s10404-009-0448-z

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(29)

Article Metrics

Article views(7479) PDF downloads(1341) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint