Wei X Y, Song Q L, Yang J S, et al. Research on wavefront measurement technology of space-based telescope using Shack-Hartmann wavefront sensor[J]. Opto-Electron Eng, 2023, 50(11): 230215. doi: 10.12086/oee.2023.230215
Citation: Wei X Y, Song Q L, Yang J S, et al. Research on wavefront measurement technology of space-based telescope using Shack-Hartmann wavefront sensor[J]. Opto-Electron Eng, 2023, 50(11): 230215. doi: 10.12086/oee.2023.230215

Research on wavefront measurement technology of space-based telescope using Shack-Hartmann wavefront sensor

    Fund Project: Project supported by National Natural Science Foundation of China (12022308, 12293031), and National Key Research and Development Program of China (2021YFC2202204, 2021YFC2202201, 2021YFC2202200)
More Information
  • Accurate measurement and control of wavefront aberrations in space-based telescopes are key to achieving efficient space gravitational wave detection. This paper presents a method for measuring wavefront aberrations of space-based telescopes based on the Shack-Hartmann wavefront sensor. This method employs a cross-correlation algorithm in the frequency domain after frequency domain threshold denoising. The measurement accuracy of the algorithm is verified using a Shack-Hartmann wavefront sensor with 20×16 sub-apertures, microlens dimensions of 0.279 mm×0.279 mm, and a focal length of 34 mm. Point source images with known defocus RMS values (0, 0.22, 0.44, and 0.66 nm) are generated, producing point source images with displacements. After wavefront reconstruction using the modal method, the RMS values of the reconstructed and residual wavefronts are calculated, comparing the measurement accuracy of the cross-correlation algorithm in the frequency domain with the traditional centroid algorithm. The results show that as the actual defocus value increases, the measurement error of the centroid algorithm presents an upward trend, respectively at 0.0966 nm, 0.1378 nm, 0.1284 nm, and 0.1463 nm. The cross-correlation algorithm in the frequency domain can increase the measurement accuracy by 13%, 7%, 18%, and 14% respectively, providing an important reference for the high-precision testing of wavefront aberrations of space gravitational wave space-based telescopes on the ground.
  • 加载中
  • [1] Thorne K S. Gravitational waves[Z]. arXiv: gr-qc/9506086, 1995. https://doi.org/10.48550/arXiv.gr-qc/9506086.

    Google Scholar

    [2] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Phys Rev Lett, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102

    CrossRef Google Scholar

    [3] Bian L G, Cai R G, Cao S, et al. The gravitational-wave physics II: progress[J]. Sci China Phys, Mech Astron, 2021, 64(12): 120401. doi: 10.1007/s11433-021-1781-x

    CrossRef Google Scholar

    [4] Piccinni O J. Status and perspectives of Continuous Gravitational Wave searches[J]. Galaxies, 2022, 10(3): 72. doi: 10.3390/galaxies10030072

    CrossRef Google Scholar

    [5] Bailes M, Berger B K, Brady P R, et al. Gravitational-wave physics and astronomy in the 2020s and 2030s[J]. Nat Rev Phys, 2021, 3(5): 344−366. doi: 10.1038/s42254-021-00303-8

    CrossRef Google Scholar

    [6] Weber J. Detection and generation of gravitational waves[J]. Phys Rev, 1960, 117(1): 306−313. doi: 10.1103/PhysRev.117.306

    CrossRef Google Scholar

    [7] van Remortel N, Janssens K, Turbang K. Stochastic gravitational wave background: methods and implications[J]. Prog Part Nucl Phys, 2023, 128: 104003. doi: 10.1016/j.ppnp.2022.104003

    CrossRef Google Scholar

    [8] Abbott R, Abbott T D, Acernese F, et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run[J]. Phys Rev X, 2023, 13(4): 041039. doi: 10.1103/PhysRevX.13.041039

    CrossRef Google Scholar

    [9] Aasi J, Abadie J, Abbott B P, et al. The characterization of Virgo data and its impact on gravitational-wave searches[J]. Class Quantum Grav, 2012, 29(15): 155002. doi: 10.1088/0264-9381/29/15/155002

    CrossRef Google Scholar

    [10] K Danzmann for the LISA Study Team. LISA-an ESA cornerstone mission for a gravitational wave observatory[J]. Class Quantum Grav, 1997, 14(6): 1399−1404. doi: 10.1088/0264-9381/14/6/002

    CrossRef Google Scholar

    [11] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010

    CrossRef Google Scholar

    [12] Kawamura S, Ando M, Seto N, et al. The Japanese space gravitational wave antenna: DECIGO[J]. Class Quantum Grav, 2011, 28(9): 094011. doi: 10.1088/0264-9381/28/9/094011

    CrossRef Google Scholar

    [13] Lu X Y, Tan Y J, Shao C G. Sensitivity functions for space-borne gravitational wave detectors[J]. Phys Rev, 2019, 100(4): 044042.

    Google Scholar

    [14] Fan Z C, Zhao L J, Cao S Y, et al. High performance telescope system design for the TianQin project[J]. Class Quantum Grav, 2022, 39(19): 195017. doi: 10.1088/1361-6382/ac8b57

    CrossRef Google Scholar

    [15] Sankar S R, Livas J. Optical alignment and wavefront error demonstration of a prototype LISA telescope[J]. Class Quantum Grav, 2020, 37(6): 065005. doi: 10.1088/1361-6382/ab6adf

    CrossRef Google Scholar

    [16] Bates W J. A wavefront shearing interferometer[J]. Proc Phys Soc, 1947, 59(6): 940. doi: 10.1088/0959-5309/59/6/303

    CrossRef Google Scholar

    [17] 饶长辉, 朱磊, 张兰强, 等. 太阳自适应光学技术进展[J]. 光电工程, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

    CrossRef Google Scholar

    Rao C H, Zhu L, Zhang L Q, et al. Development of solar adaptive optics[J]. Opto-Electron Eng, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

    CrossRef Google Scholar

    [18] Roddier F, Roddier C, Roddier N. Curvature sensing: a new wavefront sensing method[J]. Proc SPIE, 1988, 976: 203−209. doi: 10.1117/12.948547

    CrossRef Google Scholar

    [19] Shatokhina I, Hutterer V, Ramlau R. Review on methods for wavefront reconstruction from pyramid wavefront sensor data[J]. J Astron Telesc, Instrum, Syst, 2020, 6(1): 010901. doi: 10.1117/1.JATIS.6.1.010901

    CrossRef Google Scholar

    [20] Li C H, Xian H, Rao C H, et al. Field-of-view shifted Shack-Hartmann wavefront sensor for daytime adaptive optics system[J]. Opt Lett, 2006, 31(19): 2821−2823. doi: 10.1364/OL.31.002821

    CrossRef Google Scholar

    [21] Zhang L Q, Bao H, Rao X J, et al. Ground-layer adaptive optics for the New Vacuum Solar Telescope: Instrument description and first results[J]. Sci China Phys, Mech Astron, 2023, 66(6): 269611. doi: 10.1007/s11433-022-2107-4

    CrossRef Google Scholar

    [22] 姜文汉, 鲜浩, 沈锋. 夏克-哈特曼波前传感器的探测误差[J]. 量子电子学报, 1998, 15(2): 218−227.

    Google Scholar

    Jiang W H, Xian H, Shen F. Detecting error of Shack-Hartmann wavefront sensor[J]. Chin J Quantum Electron, 1998, 15(2): 218−227.

    Google Scholar

    [23] Arines J, Ares J. Minimum variance centroid thresholding[J]. Opt Lett, 2002, 27(7): 497−499. doi: 10.1364/OL.27.000497

    CrossRef Google Scholar

    [24] Lardière O, Conan R, Clare R, et al. Compared performance of different centroiding algorithms for high-pass filtered laser guide star Shack-Hartmann wavefront sensors[J]. Proc SPIE, 2010, 7736: 821−835. doi: 10.1117/12.857742

    CrossRef Google Scholar

    [25] Ma X Y, Rao C H, Zheng H Q, et al. Error analysis of CCD-based point source centroid computation under the background light[J]. Opt Express, 2009, 17(10): 8525−8541. doi: 10.1364/oe.17.008525

    CrossRef Google Scholar

    [26] Smithson R C, Tarbell T D. Correlation tracking study for meter-class solar telescope on space shuttle[R]. Palo Alto: Lockheed Palo Alto Research Laboratory, 1977.

    Google Scholar

    [27] Waldmann T A, Berkefeld T, von der Lühe II O. Turbulence profiling using wide field of view Hartmann-Shack wavefront sensors[J]. Proc SPIE, 2008, 7015: 70155O. doi: 10.1117/12.789553

    CrossRef Google Scholar

    [28] Miura N, Noto Y, Kato S, et al. Solar adaptive optics system using an electromagnetic deformable mirror[J]. Opt Rev, 2009, 16(5): 558−561. doi: 10.1007/s10043-009-0109-1

    CrossRef Google Scholar

    [29] Schewel J. Field Programmable Gate Arrays (FPGAs) for fast board development and reconfigurable computing[C]. Philadelphia, PA, United States: SPIE, 1995.

    Google Scholar

    [30] Von Der Luehe O. A study of a correlation tracking method to improve imaging quality of ground-based solar telescopes[J]. Astron Astrophys, 1983, 119(1): 85−94.

    Google Scholar

    [31] Poyneer L A. Correlation wave-front sensing algorithms for shack-hartmann-based adaptive optics using a point source[C]//Center for Adaptive Optics Spring Retreat, San Jose, 2003.

    Google Scholar

    [32] Li X X, Li X Y, Wang C X. Improvement of correlation-based centroiding methods for point source Shack–Hartmann wavefront sensor[J]. Opt Commun, 2018, 411: 187−194. doi: 10.1016/j.optcom.2017.11.059

    CrossRef Google Scholar

    [33] Hu X C, Li X H, Wang Y, et al. Fundamentals of the orbit and response for TianQin[J]. Classical and Quantum Gravity, 2018, 35(9): 095008. doi: 10.1088/1361-6382/ac8b57.

    CrossRef Google Scholar

    [34] Zhao Y, Shen J, Fang C, et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves[J]. Opt Express, 2020, 28(17): 25545−25561. doi: 10.1364/OE.397097

    CrossRef Google Scholar

    [35] Chen Z W, Leng R K, Yan C X, et al. Analysis of telescope wavefront aberration and optical path stability in space gravitational wave detection[J]. Appl Sci, 2022, 12(24): 12697. doi: 10.3390/app122412697

    CrossRef Google Scholar

    [36] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. J Refract Surg, 2001, 17(5): S573−S557. doi: 10.3928/1081-597X-20010901-13

    CrossRef Google Scholar

    [37] Kong L, Zhu L, Rao C H. Development status on the real-time controller for solar multi-conjugate adaptive optics system[J]. Proc SPIE, 2016, 9682: 96820M. doi: 10.1117/12.2243804

    CrossRef Google Scholar

    [38] Thomas S, Fusco T, Tokovinin A, et al. Comparison of centroid computation algorithms in a Shack–Hartmann sensor[J]. Mon Not Roy Astron Soc, 2006, 371(1): 323−336. doi: 10.1111/j.1365-2966.2006.10661.x

    CrossRef Google Scholar

    [39] Löfdahl M G. Evaluation of image-shift measurement algorithms for solar Shack-Hartmann wavefront sensors[J]. Astron Astrophys, 2010, 524: A90. doi: 10.1051/0004-6361/201015331

    CrossRef Google Scholar

    [40] 陈林辉, 饶长辉. 点源信标相关哈特曼-夏克波前传感器光斑偏移测量误差分析[J]. 物理学报, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701

    CrossRef Google Scholar

    Chen L H, Rao C H. Error analysis of correlating Shack-Hartmann wave-front sensor for a point source[J]. Acta Phys Sin, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701

    CrossRef Google Scholar

    [41] Mugnier L M, Blanc A, Idier J. Phase diversity: a technique for wave-front sensing and for diffraction-limited imaging[J]. Adv Imaging Electron Phys, 2006, 141: 1−76. doi: 10.1016/S1076-5670(05)41001-0

    CrossRef Google Scholar

    [42] 李新阳, 姜文汉. 哈特曼夏克传感器的泽尼克模式波前复原误差[J]. 光学学报, 2002, 22(10): 1236−1240. doi: 10.3321/j.issn:0253-2239.2002.10.016

    CrossRef Google Scholar

    Li X Y, Jiang W H. Zernike modal wavefront reconstruction error of Hartmann-Shack wavefront sensor[J]. Acta Opt Sin, 2002, 22(10): 1236−1240. doi: 10.3321/j.issn:0253-2239.2002.10.016

    CrossRef Google Scholar

    [43] Cao G, Yu X. Accuracy analysis of a Hartmann-Shack wavefront sensor operated with a faint object[J]. Opt Eng, 1994, 33(7): 2331−2335. doi: 10.1117/12.169716

    CrossRef Google Scholar

    [44] 李新阳, 姜文汉, 王春红, 等. 湍流大气中哈特曼传感器的模式波前复原误差[J]. 强激光与粒子束, 2000, 12(3): 319−323.

    Google Scholar

    Li X Y, Jiang W H, Wang C H, et al. Modal reconstruction error of the Hartmann sensor on measuring the atmosphere disturbed wavefront II[J]. High Power Laser Part Beams, 2000, 12(3): 319−323.

    Google Scholar

  • The successful detection of gravitational waves not only validate the general theory of relativity but also unveile previously undetectable cosmic events, opening new research directions for both physics and astronomy. Laser interferometers, characterized by their high sensitivity and broad frequency response, have become the primary method for gravitational wave detection. Due to the constraints imposed by terrestrial conditions, the frequency range for ground-based detection is quite limited, necessitating the exploration of space-based gravitational wave detection. Within this space-based detection framework, spaceborne telescopes serve as the core component. These telescopes require robust capabilities for interferometric laser transmission and reception, as well as high-precision tracking to accurately measure and detect gravitational wave events. Throughout their operation, these telescopes are affected by temperature variations in space, mechanical stresses or vibrations caused by launches or other space operations, thermal effects or expansions, and, over time, aging, degradation, or minor structural changes in the materials and components, all of which can result in wavefront aberrations. Such aberrations can directly influence the energy distribution and spatial position of the far-field light spot after being transmitted over hundreds of thousands of kilometers, subsequently limiting the interference quality and, in turn, the gravitational wave detection capability. To minimize the impact of wavefront aberrations on space-based gravitational wave detection, this paper introduces a frequency domain covariance algorithm for noise thresholding, replacing the threshold centroid algorithm for offset position estimation, and enhancing detection precision by incorporating multi-aperture multiplexing technology. By applying the frequency domain covariance algorithm and the threshold centroid algorithm to the slope measurement and wavefront reconstruction of actual point source images with added defocus values, we concluded that the former achieves higher measurement accuracy than the latter. The calculated defocus value and root mean square (RMS) of the residual wavefront further verified the computational precision of the relevant algorithms and their superior performance over the centroid algorithm. In comparison to the threshold centroid method, our approach exhibits greater accuracy in wavefront aberration measurement, achieving a precision of up to λ/3000. This study not only deepens our understanding of wavefront aberrations in gravitational wave detection but also paves the way for enhancing the precision and accuracy of gravitational wave detection.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint