Citation: | Zhang Z C, Hai L, Zhang S R, et al. Advances on the manipulation of structured beams with multiple degrees of freedom[J]. Opto-Electron Eng, 2024, 51(8): 240079. doi: 10.12086/oee.2024.240079 |
[1] | Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nat Photonics, 2021, 15(4): 253−262. doi: 10.1038/s41566-021-00780-4 |
[2] | Forbes A. Structured light from lasers[J]. Laser Photonics Rev, 2019, 13(11): 1900140. doi: 10.1002/lpor.201900140 |
[3] | Li W, Yu J W, Yan A M. Research progress of vortex beam array generation technology[J]. Laser Optoelectron Prog, 2020, 57(9): 090002. doi: 10.3788/LOP57.090002 |
[4] | Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 2013, 7(11): 868−874. doi: 10.1038/nphoton.2013.280 |
[5] | Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Commun Phys, 2019, 2(1): 153. doi: 10.1038/s42005-019-0249-y |
[6] | Chang L, Liu S T, Bowers J E. Integrated optical frequency comb technologies[J]. Nat Photonics, 2022, 16(2): 95−108. doi: 10.1038/s41566-021-00945-1 |
[7] | Zuo J X, Lin X C. High-power laser systems[J]. Laser Photonics Rev, 2022, 16(5): 2100741. doi: 10.1002/lpor.202100741 |
[8] | Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. J Opt, 2018, 20(12): 123001. doi: 10.1088/2040-8986/aaeb7d |
[9] | 郑淑君, 林枭, 黄志云, 等. 基于偏光全息的光场调控研究进展[J]. 光电工程, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114 Zheng S J, Lin X, Huang Z Y, et al. Light field regulation based on polarization holography[J]. Opto-Electron Eng, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114 |
[10] | Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185−8189. doi: 10.1103/PhysRevA.45.8185 |
[11] | Zhang Z C, Hai L, Fu S Y, et al. Advances on solid-state vortex laser[J]. Photonics, 2022, 9(4): 215. doi: 10.3390/photonics9040215 |
[12] | Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Adv Opt Photonics, 2011, 3(2): 161−204. doi: 10.1364/AOP.3.000161 |
[13] | Zeng R Y, Zhao Q, Shen Y J, et al. Structural stability of open vortex beams[J]. Appl Phys Lett, 2021, 119(17): 171105. doi: 10.1063/5.0062967 |
[14] | Bai Y H, Lv H R, Fu X, et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chin Opt Lett, 2022, 20(1): 012601. doi: 10.3788/COL202220.012601 |
[15] | Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138 |
[16] | Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545−1548. doi: 10.1126/science.1237861 |
[17] | Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Adv Opt Photonics, 2015, 7(1): 66−106. doi: 10.1364/AOP.7.000066 |
[18] | Yu S Y. Potentials and challenges of using orbital angular momentum communications in optical interconnects[J]. Opt Express, 2015, 23(3): 3075−3087. doi: 10.1364/OE.23.003075 |
[19] | Wang J. Advances in communications using optical vortices[J]. Photonics Res, 2016, 4(5): B14−B28. doi: 10.1364/PRJ.4.000B14 |
[20] | Fu S Y, Zhai Y W, Zhou H, et al. Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices[J]. Chin Opt Lett, 2019, 17(8): 080602. doi: 10.3788/COL201917.080602 |
[21] | Fu S Y, Zhai Y W, Zhou H, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying[J]. Opt Express, 2019, 27(23): 33111−33119. doi: 10.1364/OE.27.033111 |
[22] | Fu S Y, Zhai Y W, Zhou H, et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding[J]. Opt Lett, 2019, 44(19): 4753−4756. doi: 10.1364/OL.44.004753 |
[23] | Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 2013, 341(6145): 537−540. doi: 10.1126/science.1239936 |
[24] | Lavery M P J, Barnett S M, Speirits F C, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body[J]. Optica, 2014, 1(1): 1−4. doi: 10.1364/OPTICA.1.000001 |
[25] | Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear doppler effects (Laser Photonics Rev. 11(6)/2017)[J]. Laser Photonics Rev, 2017, 11(6): 1770064. doi: 10.1002/lpor.201770064 |
[26] | Fu S Y, Wang T L, Zhang Z Y, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions[J]. Opt Express, 2017, 25(17): 20098−20108. doi: 10.1364/OE.25.020098 |
[27] | Zhang W H, Gao J S, Zhang D K, et al. Free-space remote sensing of rotation at the photon-counting level[J]. Phys Rev Appl, 2018, 10(4): 044014. doi: 10.1103/PhysRevApplied.10.044014 |
[28] | Qiu S, Liu T, Ren Y, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect[J]. Opt Express, 2019, 27(17): 24781−24792. doi: 10.1364/OE.27.024781 |
[29] | Zhai Y W, Fu S Y, Yin C, et al. Detection of angular acceleration based on optical rotational Doppler effect[J]. Opt Express, 2019, 27(11): 15518−15527. doi: 10.1364/OE.27.015518 |
[30] | Zhai Y W, Fu S Y, Zhang J Q, et al. Remote detection of a rotator based on rotational Doppler effect[J]. Appl Phys Express, 2020, 13(2): 022012. doi: 10.35848/1882-0786/ab6e0c |
[31] | Padgett M, Bowman R. Tweezers with a twist[J]. Nat Photonics, 2011, 5(6): 343−348. doi: 10.1038/nphoton.2011.81 |
[32] | Chen M Z, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Opt Lett, 2013, 38(22): 4919−4922. doi: 10.1364/OL.38.004919 |
[33] | Gecevičius M, Drevinskas R, Beresna M, et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Appl Phys Lett, 2014, 104(23): 231110. doi: 10.1063/1.4882418 |
[34] | Liang Y S, Yao B L, Ma B H, et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator[J]. Acta Opt Sin, 2016, 36(3): 309001. doi: 10.3788/aos201636.0309001 |
[35] | Yang Y J, Ren Y X, Chen M Z, et al. Optical trapping with structured light: a review[J]. Adv Photonics, 2021, 3(3): 034001. doi: 10.1117/1.AP.3.3.034001 |
[36] | Fickler R, Lapkiewicz R, Huber M, et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nat Commun, 2014, 5(1): 4502. doi: 10.1038/ncomms5502 |
[37] | Cao H, Gao S C, Zhang C, et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber[J]. Optica, 2020, 7(3): 232−237. doi: 10.1364/OPTICA.381403 |
[38] | Li Z X, Zhu D, Lin P C, et al. High-dimensional entanglement generation based on a Pancharatnam-Berry phase metasurface[J]. Photonics Res, 2022, 10(12): 2702−2707. doi: 10.1364/PRJ.470663 |
[39] | Shen Y J, Rosales-Guzmán C. Nonseparable states of light: from quantum to classical[J]. Laser Photonics Rev, 2022, 16(7): 2100533. doi: 10.1002/lpor.202100533 |
[40] | Wan Z S, Wang H, Liu Q, et al. Ultra-degree-of-freedom structured light for ultracapacity information carriers[J]. ACS Photonics, 2023, 10(7): 2149−2164. doi: 10.1021/acsphotonics.2c01640 |
[41] | 刘永雷, 董震, 陈亚红, 等. 新型相干结构光场调控及应用研究进展[J]. 光电工程, 2022, 49(11): 220178. doi: 10.12086/oee.2022.220178 Liu Y L, Dong Z, Chen Y H, et al. Research advances of partially coherent beams with novel coherence structures: engineering and applications[J]. Opto-Electron Eng, 2022, 49(11): 220178. doi: 10.12086/oee.2022.220178 |
[42] | Zhang D K, Feng X, Cui K Y, et al. Identifying orbital angular momentum of vectorial vortices with pancharatnam phase and stokes parameters[J]. Sci Rep, 2015, 5(1): 11982. doi: 10.1038/srep11982 |
[43] | Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. J Phys D: Appl Phys, 1999, 32(13): 1455−1461. doi: 10.1088/0022-3727/32/13/304 |
[44] | Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Appl Phys A Mater Sci Process, 2007, 86(3): 329−334. doi: 10.1007/s00339-006-3784-9 |
[45] | Zhao W Q, Tang F, Qiu L R, et al. Research status and application on the focusing properties of cylindrical vector beams[J]. Acta Phys Sin, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201 |
[46] | Zhou Z H, Tan Q F, Jin G F. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams[J]. Chin Opt Lett, 2010, 8(12): 1178−1181. |
[47] | Töppel F, Aiello A, Marquardt C, et al. Classical entanglement in polarization metrology[J]. New J Phys, 2014, 16: 073019. doi: 10.1088/1367-2630/16/7/073019 |
[48] | Shen Y J, Zhang Q, Shi P, et al. Optical skyrmions and other topological quasiparticles of light[J]. Nat Photonics, 2024, 18(1): 15−25. doi: 10.1038/s41566-023-01325-7 |
[49] | Lazarev G, Chen P J, Strauss J, et al. Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited][J]. Opt Express, 2019, 27(11): 16206−16249. doi: 10.1364/OE.27.016206 |
[50] | Mirhosseini M, Magaña-Loaiza O S, Chen C C, et al. Rapid generation of light beams carrying orbital angular momentum[J]. Opt Express, 2013, 21(25): 30196−30203. doi: 10.1364/OE.21.030196 |
[51] | Ren Y X, Li M, Huang K, et al. Experimental generation of Laguerre-Gaussian beam using digital micromirror device[J]. Appl Opt, 2010, 49(10): 1838−1844. doi: 10.1364/AO.49.001838 |
[52] | Chen Y, Fang Z X, Ren Y X, et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Appl Opt, 2015, 54(27): 8030−8035. doi: 10.1364/AO.54.008030 |
[53] | Ji W, Lee C H, Chen P, et al. Meta-q-plate for complex beam shaping[J]. Sci Rep, 2016, 6: 25528. doi: 10.1038/srep25528 |
[54] | Zhou H, Yang J Q, Gao C Q, et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation[J]. Opt Mater Express, 2019, 9(6): 2699−2707. doi: 10.1364/OME.9.002699 |
[55] | Shaltout A M, Lagoudakis K G, Van De Groep J, et al. Spatiotemporal light control with frequency-gradient metasurfaces[J]. Science, 2019, 365(6451): 374−377. doi: 10.1126/science.aax2357 |
[56] | Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100 |
[57] | Jones P H, Rashid M, Makita M, et al. Sagnac interferometer method for synthesis of fractional polarization vortices[J]. Opt Lett, 2009, 34(17): 2560−2562. doi: 10.1364/OL.34.002560 |
[58] | Liu S, Li P, Peng T, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Opt Express, 2012, 20(19): 21715−21721. doi: 10.1364/OE.20.021715 |
[59] | Li P, Zhang Y, Liu S, et al. Generation of perfect vectorial vortex beams[J]. Opt Lett, 2016, 41(10): 2205−2208. doi: 10.1364/OL.41.002205 |
[60] | Liu S, Qi S X, Zhang Y, et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Res, 2018, 6(4): 228−233. doi: 10.1364/PRJ.6.000228 |
[61] | Maurer C, Jesacher A, Fürhapter S, et al. Tailoring of arbitrary optical vector beams[J]. New J Phys, 2007, 9: 78. doi: 10.1088/1367-2630/9/3/078 |
[62] | Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Opt Lett, 2007, 32(24): 3549−3551. doi: 10.1364/OL.32.003549 |
[63] | Xie Y Y, Cheng Z J, Liu X, et al. Simple method for generation of vector beams using a small-angle birefringent beam splitter[J]. Opt Lett, 2015, 40(21): 5109−5112. doi: 10.1364/OL.40.005109 |
[64] | Shen Y J, Martínez E C, Rosales-Guzmán C. Generation of optical skyrmions with tunable topological textures[J]. ACS Photonics, 2022, 9(1): 296−303. doi: 10.1021/acsphotonics.1c01703 |
[65] | Moreno I, Davis J A, Cottrell D M, et al. Encoding high-order cylindrically polarized light beams[J]. Appl Opt, 2014, 53(24): 5493−5501. doi: 10.1364/AO.53.005493 |
[66] | Fu S Y, Gao C Q, Shi Y, et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer[J]. Opt Lett, 2015, 40(8): 1775−1778. doi: 10.1364/OL.40.001775 |
[67] | Fu S Y, Wang T L, Gao C Q. Generating perfect polarization vortices through encoding liquid-crystal display devices[J]. Appl Opt, 2016, 55(23): 6501−6505. doi: 10.1364/AO.55.006501 |
[68] | Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Phys Rev Lett, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905 |
[69] | Yi X N, Ling X H, Zhang Z Y, et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces[J]. Opt Express, 2014, 22(14): 17207−17215. doi: 10.1364/OE.22.017207 |
[70] | Fu S Y, Gao C Q, Wang T L, et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders[J]. Opt Lett, 2016, 41(23): 5454−5457. doi: 10.1364/OL.41.005454 |
[71] | Yue F Y, Wen D D, Zhang C M, et al. Multichannel polarization-controllable superpositions of orbital angular momentum states[J]. Adv Mater, 2017, 29(15): 1603838. doi: 10.1002/adma.201603838 |
[72] | Zhang X, Huang L L, Zhao R Z, et al. Multiplexed generation of generalized vortex beams with on-demand intensity profiles based on metasurfaces[J]. Laser Photonics Rev, 2022, 16(3): 2100451. doi: 10.1002/lpor.202100451 |
[73] | Wu H S, Zeng Q J, Wang X R, et al. Polarization-dependent phase-modulation metasurface for vortex beam (de)multiplexing[J]. Nanophotonics, 2023, 12(6): 1129−1135. doi: 10.1515/nanoph-2022-0710 |
[74] | 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117 Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117 |
[75] | Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nat Photonics, 2016, 10(5): 327−332. doi: 10.1038/nphoton.2016.37 |
[76] | Fan J T, Zhao J, Shi L P, et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator[J]. Adv Photonics, 2020, 2(4): 045001. doi: 10.1117/1.AP.2.4.045001 |
[77] | Song R, Gao C Q, Zhou H, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm[J]. Opt Lett, 2020, 45(16): 4626−4629. doi: 10.1364/OL.400835 |
[78] | Song R, Liu X T, Fu S Y, et al. Simultaneous tailoring of longitudinal and transverse mode inside an Er: YAG laser[J]. Chin Opt Lett, 2021, 19(11): 111404. |
[79] | Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nat Photonics, 2020, 14(8): 498−503. doi: 10.1038/s41566-020-0623-z |
[80] | Shen Y J, Wang Z Y, Fu X, et al. SU(2) Poincare sphere: A generalized representation for multidimensional structured light[J]. Phys Rev A, 2020, 102(3): 031501. doi: 10.1103/PhysRevA.102.031501 |
[81] | Shen Y J. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light[J]. J Opt, 2021, 23(12): 124004. doi: 10.1088/2040-8986/ac3676 |
[82] | Chen Y F, Jiang C H, Lan Y P, et al. Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity[J]. Phys Rev A, 2004, 69(5): 053807. doi: 10.1103/PhysRevA.69.053807 |
[83] | Dingjan J, van Exter M P, Woerdman J P. Geometric modes in a single-frequency Nd: YVO4 laser[J]. Opt Commun, 2001, 188(5-6): 345−351. doi: 10.1016/S0030-4018(00)01157-3 |
[84] | Shen Y J, Yang X L, Fu X, et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator[J]. Appl Opt, 2018, 57(32): 9543−9549. doi: 10.1364/AO.57.009543 |
[85] | Tung J C, Liang H C, Lu T H, et al. Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter[J]. Opt Express, 2016, 24(20): 22796−22805. doi: 10.1364/OE.24.022796 |
[86] | Shen Y J, Yang X L, Naidoo D, et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum[J]. Optica, 2020, 7(12): 1705. doi: 10.1364/OPTICA.414397 |
[87] | Wan Z S, Wang Z Y, Yang X L, et al. Digitally tailoring arbitrary structured light of generalized ray-wave duality[J]. Opt Express, 2020, 28(21): 31043−31056. doi: 10.1364/OE.400587 |
[88] | Shen Y J, Nape I, Yang X L, et al. Creation and control of high-dimensional multi-partite classically entangled light[J]. Light Sci Appl, 2021, 10(1): 50. doi: 10.1038/s41377-021-00493-x |
[89] | Wang Z Y, Shen Y J, Naidoo D, et al. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics[J]. Opt Express, 2021, 29(1): 315−329. doi: 10.1364/OE.414674 |
[90] | Wan Z S, Shen Y J, Liu Q, et al. Multipartite classically entangled scalar beams[J]. Opt Lett, 2022, 47(8): 2052−2055. doi: 10.1364/OL.451046 |
[91] | Pan J, Wang Z Y, Zhan Z Y, et al. Multiaxial super-geometric mode laser[J]. Opt Lett, 2023, 48(7): 1630−1633. doi: 10.1364/OL.485163 |
[92] | Wan Z S, Shen Y J, Wang Z Y, et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications[J]. Light Sci Appl, 2022, 11(1): 144. doi: 10.1038/s41377-022-00834-4. |
[93] | Hai L, Zhang Z C, Liu S L, et al. Intra-cavity laser manipulation of high-dimensional non-separable states[J]. Laser Photonics Rev, 2024, 18(4): 2300593. doi: 10.1002/lpor.202300593 |
[94] | Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810−816. doi: 10.1038/nature01935 |
[95] | Fu S Y, Wang T L, Gao C Q. Perfect optical vortex array with controllable diffraction order and topological charge[J]. J Opt Soc America A, 2016, 33(9): 1836−1842. doi: 10.1364/JOSAA.33.001836 |
[96] | Fu S Y, Zhang S K, Wang T L, et al. Rectilinear lattices of polarization vortices with various spatial polarization distributions[J]. Opt Express, 2016, 24(16): 18486−18491. doi: 10.1364/OE.24.018486 |
[97] | Fu S Y, Gao C Q, Wang T L, et al. Detection of topological charges for coaxial multiplexed perfect vortices[C]//Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, 2017: 1–2. https://doi.org/10.1109/OECC.2017.8114895. |
[98] | Wang H, Fu S Y, Gao C Q. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom[J]. Opt Express, 2021, 29(7): 10811−10824. doi: 10.1364/OE.422301 |
[99] | Fu S Y, Wang T L, Zhang Z Y, et al. Selective acquisition of multiple states on hybrid Poincare sphere[J]. Appl Phys Lett, 2017, 110(19): 191102. doi: 10.1063/1.4983284 |
[100] | Shang Z J, Fu S Y, Hai L, et al. Multiplexed vortex state array toward high-dimensional data multicasting[J]. Opt Express, 2022, 30(19): 34053−34063. doi: 10.1364/OE.466353 |
[101] | Piccardo M, de Oliveira M, Toma A, et al. Vortex laser arrays with topological charge control and self-healing of defects[J]. Nat Photonics, 2022, 16(5): 359−365. doi: 10.1038/s41566-022-00986-0 |
[102] | Yessenov M, Hall L A, Schepler K L, et al. Space-time wave packets[J]. Adv Opt Photonics, 2022, 14(3): 455−570. doi: 10.1364/AOP.450016 |
[103] | Cao Q, Zhan Q W. Spatiotemporal sculpturing of light and recent development in spatiotemporal optical vortices wavepackets (Invited)[J]. Acta Photonica Sin, 2022, 51(1): 0151102. doi: 10.3788/gzxb20225101.0151102 |
[104] | Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light Sci Appl, 2017, 6(7): e17011. doi: 10.1038/lsa.2017.11 |
[105] | Ruffato G. Non-destructive OAM measurement via light-matter interaction[J]. Light Sci Appl, 2022, 11(1): 55. doi: 10.1038/s41377-022-00749-0 |
[106] | Zhao Z, Song H, Zhang R Z, et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines[J]. Nat Commun, 2020, 11(1): 4099. doi: 10.1038/s41467-020-17805-1 |
[107] | Chong A, Wan C H, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nat Photonics, 2020, 14(6): 350−354. doi: 10.1038/s41566-020-0587-z |
[108] | Wan C H, Chen J, Chong A, et al. Photonic orbital angular momentum with controllable orientation[J]. Natl Sci Rev, 2022, 9(7): nwab149. doi: 10.1093/nsr/nwab149 |
[109] | Cao Q, Zheng P K, Zhan Q W. Vectorial sculpturing of spatiotemporal wavepackets[J]. APL Photonics, 2022, 7(9): 096102. doi: 10.1063/5.0107411 |
[110] | Wan C H, Cao Q, Chen J, et al. Toroidal vortices of light[J]. Nat Photonics, 2022, 16(7): 519−522. doi: 10.1038/s41566-022-01013-y |
[111] | Chen W, Liu Y, Yu A Z, et al. Observation of chiral symmetry breaking in toroidal vortices of light[J]. Phys Rev Lett, 2024, 132(15): 153801. doi: 10.1103/PhysRevLett.132.153801 |
[112] | Papasimakis N, Raybould T, Fedotov V A, et al. Pulse generation scheme for flying electromagnetic doughnuts[J]. Phys Rev B, 2018, 97(20): 201409. doi: 10.1103/PhysRevB.97.201409 |
[113] | Shen Y J, Yu B S, Wu H J, et al. Topological transformation and free-space transport of photonic hopfions[J]. Adv Photonics, 2023, 5(1): 015001. doi: 10.1117/1.AP.5.1.015001 |
[114] | Zdagkas A, McDonnell C, Deng J H, et al. Observation of toroidal pulses of light[J]. Nat Photonics, 2022, 16(7): 523−528. doi: 10.1038/s41566-022-01028-5 |
[115] | Guo C, Xiao M, Orenstein M, et al. Structured 3D linear space-time light bullets by nonlocal nanophotonics[J]. Light Sci Appl, 2021, 10(1): 160. doi: 10.1038/s41377-021-00595-6 |
By tailoring single or multiple degrees of freedom, structured beams with novel physical properties have gained numerous interests. With the development of modern optics, the increasing advanced applications require more DoFs of laser field to be coupled and flexibly manipulated. Among the various DoFs, SAM, as an intrinsic DoF, has been applied to modulate vector beams. While OAM, as an emerging DoF, decides the vortex beams with helical phase. The coupling of above two enabling the construction of high-dimensional Hilbert space, forms the vector vortex beams with phase and polarization singularities, which has already found broad applications in domains like ultra-large capacity optical communication, remote sensing detection and quantum communication. Besides the vector vortex beams, most structured beams are manipulated by only one or two coupled DoFs, like ray-wave structured light and spatiotemporal light. The ability to simultaneously tailor more DoFs and generate a family of complex structured beams is crucial in the cutting-edge realm. The non-separable states, optical skyrmions and photonic hopfions can be seen as the typical instance. However, there is still a significant challenge to integrate the novel degrees of freedom with the traditional degrees of freedom, limiting the extension and expansion of high-dimensional and multi-dimensional structured beams. In this paper, from the perspective of extent of the multi-DoFs coupling, we systematically review the manipulation methods and a series of corresponding structured beams. Begin with the SAM-OAM coupled vectorial vortex beams, the principle and representation is briefly presented. Classified by the generation mechanism, the extra-cavity and intra-cavity manipulation methods are also summarized. The extra-cavity generation is mainly achieved by combining orthogonally polarized beams with different OAMs, while the intra-cavity manipulation is achieved by inserting SAM-OAM coupling devices like Q-Plate and metasurface. Further, the "super-degree-of-freedom" complex structured light field, denoting the three and more DoFs combined beams, are introduced here: A bunch of SU(2) beams have the unique properties as ray-wave duality, capable of unveiling more flexibly controlled DoFs; complex vortex arrays, manipulated with the path DoF, can be simply achieved by the diffractive optical elements; spatiotemporal vortex beams has extending the OAM to time domain. Such structured beams have already exploited more than five DoFs. Of course, due to the abundant degrees of freedom of the light field and the various ways of combination, this paper does not cover all the complex structured light fields, but selects the most representative and common structured light fields with great practical value, and it is not difficult to find the possibility of further expansion of the degree of freedom in the further study.
The extra-cavity manipulation of VVBs. (a) The generation of optical skyrmions by OAM manipulation on opposite SAM states[64]; (b) The generation of perfect VVBs using cascaded LC-SLMs[67]
The intra-cavity manipulation of VVBs. (a) The generation of high-order Poincare sphere beams from a laser using Q-plate [75]; (b) The non-linear generation of wave-tunable CVBs in OPO cavity[76]; (c) The scheme of single-frequency CVBs laser[78]; (d) The generation of hybrid Poincare sphere beams using meta-surface[79]
The representation and manipulation of SU (2) coherent states. (a) SU (2) Poincare sphere beams[80]; (b) The SU(2) coherent states decided by the frequency degeneracy and the coherent phase[83]; (c) The manipulation principle of 3-DoFs 8-dimensional nonseparable states[85]; (d) The digital modulation of SU(2) coherent states[87]; (e) The intra-cavity manipulation of 3-DoF nonseparable states[90]
The complex vortex array coupled by multi-DoFs. (a) The vector vortices array manipulated by 2D grating[99]; (b) The five DoFs manipulation on vector vortices array using phase-only grating[98]; (c) The higher dimensional vector vortices array manipulated by 3-DoFs[100]
The novel structured beams manipulated by multi-DoFs in the space-time domain. (a) Spatiotemporal beams with two OAMs[106]; (b) The schematic diagram of scalar spatiotemporal vortices[107]; (c) The experimental scheme and the mode conversion of vector spatiotemporal vortices[109]; (d) Vortex rings of light[110]; (e) “Photonic conchs” [111]; (f) Flying electromagnetic doughnuts manipulated by metasurface[112]; (g) The photonic hopfions with 3D topological structure[113]