Zhang Z C, Hai L, Zhang S R, et al. Advances on the manipulation of structured beams with multiple degrees of freedom[J]. Opto-Electron Eng, 2024, 51(8): 240079. doi: 10.12086/oee.2024.240079
Citation: Zhang Z C, Hai L, Zhang S R, et al. Advances on the manipulation of structured beams with multiple degrees of freedom[J]. Opto-Electron Eng, 2024, 51(8): 240079. doi: 10.12086/oee.2024.240079

Advances on the manipulation of structured beams with multiple degrees of freedom

    Fund Project: Project supported by National Key Research and Development Program of China (2022YFB3607700), National Natural Science Foundation of China (62375014, 11834001, 61905012, 62101033), and Beijing Natural Science Foundation (1232031)
More Information
  • Structured beams manipulated by single or multiple degrees of freedom (DoFs) present novel physical properties, showing important research significance and practical value. Among them, orbital angular momentum (OAM), as a novel DoF, directly decides the phase and spatial distribution of laser beams. The independent manipulation of OAM or the coupled manipulation with spin angular momentum enables the construction of high-dimensional Hilbert space, which has already found broad applications in domains like ultra-large capacity optical communication, remote sensing detection and quantum communication. On this basis, considering the rapidly evolving application requirements, there is still a significant challenge to integrate the novel degrees of freedom with the traditional degrees of freedom, limiting the extension and expansion of high-dimensional and multi-dimensional structured beams. In this paper, from the perspective of two-degree-of-freedom manipulation methods, a series of structured beams coupled by two intrinsic DoFs is reviewed with emphasis on the vectorial vortex beams. Furthermore, we systematically review the manipulation of complex structured beams with multiple degrees of freedom that overcome the limitations of conventional two-degree-of-freedom. Also, the related work of our team is discussed here.
  • 加载中
  • [1] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nat Photonics, 2021, 15(4): 253−262. doi: 10.1038/s41566-021-00780-4

    CrossRef Google Scholar

    [2] Forbes A. Structured light from lasers[J]. Laser Photonics Rev, 2019, 13(11): 1900140. doi: 10.1002/lpor.201900140

    CrossRef Google Scholar

    [3] Li W, Yu J W, Yan A M. Research progress of vortex beam array generation technology[J]. Laser Optoelectron Prog, 2020, 57(9): 090002. doi: 10.3788/LOP57.090002

    CrossRef Google Scholar

    [4] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 2013, 7(11): 868−874. doi: 10.1038/nphoton.2013.280

    CrossRef Google Scholar

    [5] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Commun Phys, 2019, 2(1): 153. doi: 10.1038/s42005-019-0249-y

    CrossRef Google Scholar

    [6] Chang L, Liu S T, Bowers J E. Integrated optical frequency comb technologies[J]. Nat Photonics, 2022, 16(2): 95−108. doi: 10.1038/s41566-021-00945-1

    CrossRef Google Scholar

    [7] Zuo J X, Lin X C. High-power laser systems[J]. Laser Photonics Rev, 2022, 16(5): 2100741. doi: 10.1002/lpor.202100741

    CrossRef Google Scholar

    [8] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. J Opt, 2018, 20(12): 123001. doi: 10.1088/2040-8986/aaeb7d

    CrossRef Google Scholar

    [9] 郑淑君, 林枭, 黄志云, 等. 基于偏光全息的光场调控研究进展[J]. 光电工程, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114

    CrossRef Google Scholar

    Zheng S J, Lin X, Huang Z Y, et al. Light field regulation based on polarization holography[J]. Opto-Electron Eng, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114

    CrossRef Google Scholar

    [10] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185−8189. doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [11] Zhang Z C, Hai L, Fu S Y, et al. Advances on solid-state vortex laser[J]. Photonics, 2022, 9(4): 215. doi: 10.3390/photonics9040215

    CrossRef Google Scholar

    [12] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Adv Opt Photonics, 2011, 3(2): 161−204. doi: 10.1364/AOP.3.000161

    CrossRef Google Scholar

    [13] Zeng R Y, Zhao Q, Shen Y J, et al. Structural stability of open vortex beams[J]. Appl Phys Lett, 2021, 119(17): 171105. doi: 10.1063/5.0062967

    CrossRef Google Scholar

    [14] Bai Y H, Lv H R, Fu X, et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chin Opt Lett, 2022, 20(1): 012601. doi: 10.3788/COL202220.012601

    CrossRef Google Scholar

    [15] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [16] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545−1548. doi: 10.1126/science.1237861

    CrossRef Google Scholar

    [17] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Adv Opt Photonics, 2015, 7(1): 66−106. doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [18] Yu S Y. Potentials and challenges of using orbital angular momentum communications in optical interconnects[J]. Opt Express, 2015, 23(3): 3075−3087. doi: 10.1364/OE.23.003075

    CrossRef Google Scholar

    [19] Wang J. Advances in communications using optical vortices[J]. Photonics Res, 2016, 4(5): B14−B28. doi: 10.1364/PRJ.4.000B14

    CrossRef Google Scholar

    [20] Fu S Y, Zhai Y W, Zhou H, et al. Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices[J]. Chin Opt Lett, 2019, 17(8): 080602. doi: 10.3788/COL201917.080602

    CrossRef Google Scholar

    [21] Fu S Y, Zhai Y W, Zhou H, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying[J]. Opt Express, 2019, 27(23): 33111−33119. doi: 10.1364/OE.27.033111

    CrossRef Google Scholar

    [22] Fu S Y, Zhai Y W, Zhou H, et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding[J]. Opt Lett, 2019, 44(19): 4753−4756. doi: 10.1364/OL.44.004753

    CrossRef Google Scholar

    [23] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 2013, 341(6145): 537−540. doi: 10.1126/science.1239936

    CrossRef Google Scholar

    [24] Lavery M P J, Barnett S M, Speirits F C, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body[J]. Optica, 2014, 1(1): 1−4. doi: 10.1364/OPTICA.1.000001

    CrossRef Google Scholar

    [25] Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear doppler effects (Laser Photonics Rev. 11(6)/2017)[J]. Laser Photonics Rev, 2017, 11(6): 1770064. doi: 10.1002/lpor.201770064

    CrossRef Google Scholar

    [26] Fu S Y, Wang T L, Zhang Z Y, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions[J]. Opt Express, 2017, 25(17): 20098−20108. doi: 10.1364/OE.25.020098

    CrossRef Google Scholar

    [27] Zhang W H, Gao J S, Zhang D K, et al. Free-space remote sensing of rotation at the photon-counting level[J]. Phys Rev Appl, 2018, 10(4): 044014. doi: 10.1103/PhysRevApplied.10.044014

    CrossRef Google Scholar

    [28] Qiu S, Liu T, Ren Y, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect[J]. Opt Express, 2019, 27(17): 24781−24792. doi: 10.1364/OE.27.024781

    CrossRef Google Scholar

    [29] Zhai Y W, Fu S Y, Yin C, et al. Detection of angular acceleration based on optical rotational Doppler effect[J]. Opt Express, 2019, 27(11): 15518−15527. doi: 10.1364/OE.27.015518

    CrossRef Google Scholar

    [30] Zhai Y W, Fu S Y, Zhang J Q, et al. Remote detection of a rotator based on rotational Doppler effect[J]. Appl Phys Express, 2020, 13(2): 022012. doi: 10.35848/1882-0786/ab6e0c

    CrossRef Google Scholar

    [31] Padgett M, Bowman R. Tweezers with a twist[J]. Nat Photonics, 2011, 5(6): 343−348. doi: 10.1038/nphoton.2011.81

    CrossRef Google Scholar

    [32] Chen M Z, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Opt Lett, 2013, 38(22): 4919−4922. doi: 10.1364/OL.38.004919

    CrossRef Google Scholar

    [33] Gecevičius M, Drevinskas R, Beresna M, et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Appl Phys Lett, 2014, 104(23): 231110. doi: 10.1063/1.4882418

    CrossRef Google Scholar

    [34] Liang Y S, Yao B L, Ma B H, et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator[J]. Acta Opt Sin, 2016, 36(3): 309001. doi: 10.3788/aos201636.0309001

    CrossRef Google Scholar

    [35] Yang Y J, Ren Y X, Chen M Z, et al. Optical trapping with structured light: a review[J]. Adv Photonics, 2021, 3(3): 034001. doi: 10.1117/1.AP.3.3.034001

    CrossRef Google Scholar

    [36] Fickler R, Lapkiewicz R, Huber M, et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nat Commun, 2014, 5(1): 4502. doi: 10.1038/ncomms5502

    CrossRef Google Scholar

    [37] Cao H, Gao S C, Zhang C, et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber[J]. Optica, 2020, 7(3): 232−237. doi: 10.1364/OPTICA.381403

    CrossRef Google Scholar

    [38] Li Z X, Zhu D, Lin P C, et al. High-dimensional entanglement generation based on a Pancharatnam-Berry phase metasurface[J]. Photonics Res, 2022, 10(12): 2702−2707. doi: 10.1364/PRJ.470663

    CrossRef Google Scholar

    [39] Shen Y J, Rosales-Guzmán C. Nonseparable states of light: from quantum to classical[J]. Laser Photonics Rev, 2022, 16(7): 2100533. doi: 10.1002/lpor.202100533

    CrossRef Google Scholar

    [40] Wan Z S, Wang H, Liu Q, et al. Ultra-degree-of-freedom structured light for ultracapacity information carriers[J]. ACS Photonics, 2023, 10(7): 2149−2164. doi: 10.1021/acsphotonics.2c01640

    CrossRef Google Scholar

    [41] 刘永雷, 董震, 陈亚红, 等. 新型相干结构光场调控及应用研究进展[J]. 光电工程, 2022, 49(11): 220178. doi: 10.12086/oee.2022.220178

    CrossRef Google Scholar

    Liu Y L, Dong Z, Chen Y H, et al. Research advances of partially coherent beams with novel coherence structures: engineering and applications[J]. Opto-Electron Eng, 2022, 49(11): 220178. doi: 10.12086/oee.2022.220178

    CrossRef Google Scholar

    [42] Zhang D K, Feng X, Cui K Y, et al. Identifying orbital angular momentum of vectorial vortices with pancharatnam phase and stokes parameters[J]. Sci Rep, 2015, 5(1): 11982. doi: 10.1038/srep11982

    CrossRef Google Scholar

    [43] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. J Phys D: Appl Phys, 1999, 32(13): 1455−1461. doi: 10.1088/0022-3727/32/13/304

    CrossRef Google Scholar

    [44] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Appl Phys A Mater Sci Process, 2007, 86(3): 329−334. doi: 10.1007/s00339-006-3784-9

    CrossRef Google Scholar

    [45] Zhao W Q, Tang F, Qiu L R, et al. Research status and application on the focusing properties of cylindrical vector beams[J]. Acta Phys Sin, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201

    CrossRef Google Scholar

    [46] Zhou Z H, Tan Q F, Jin G F. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams[J]. Chin Opt Lett, 2010, 8(12): 1178−1181.

    Google Scholar

    [47] Töppel F, Aiello A, Marquardt C, et al. Classical entanglement in polarization metrology[J]. New J Phys, 2014, 16: 073019. doi: 10.1088/1367-2630/16/7/073019

    CrossRef Google Scholar

    [48] Shen Y J, Zhang Q, Shi P, et al. Optical skyrmions and other topological quasiparticles of light[J]. Nat Photonics, 2024, 18(1): 15−25. doi: 10.1038/s41566-023-01325-7

    CrossRef Google Scholar

    [49] Lazarev G, Chen P J, Strauss J, et al. Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited][J]. Opt Express, 2019, 27(11): 16206−16249. doi: 10.1364/OE.27.016206

    CrossRef Google Scholar

    [50] Mirhosseini M, Magaña-Loaiza O S, Chen C C, et al. Rapid generation of light beams carrying orbital angular momentum[J]. Opt Express, 2013, 21(25): 30196−30203. doi: 10.1364/OE.21.030196

    CrossRef Google Scholar

    [51] Ren Y X, Li M, Huang K, et al. Experimental generation of Laguerre-Gaussian beam using digital micromirror device[J]. Appl Opt, 2010, 49(10): 1838−1844. doi: 10.1364/AO.49.001838

    CrossRef Google Scholar

    [52] Chen Y, Fang Z X, Ren Y X, et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Appl Opt, 2015, 54(27): 8030−8035. doi: 10.1364/AO.54.008030

    CrossRef Google Scholar

    [53] Ji W, Lee C H, Chen P, et al. Meta-q-plate for complex beam shaping[J]. Sci Rep, 2016, 6: 25528. doi: 10.1038/srep25528

    CrossRef Google Scholar

    [54] Zhou H, Yang J Q, Gao C Q, et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation[J]. Opt Mater Express, 2019, 9(6): 2699−2707. doi: 10.1364/OME.9.002699

    CrossRef Google Scholar

    [55] Shaltout A M, Lagoudakis K G, Van De Groep J, et al. Spatiotemporal light control with frequency-gradient metasurfaces[J]. Science, 2019, 365(6451): 374−377. doi: 10.1126/science.aax2357

    CrossRef Google Scholar

    [56] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100

    CrossRef Google Scholar

    [57] Jones P H, Rashid M, Makita M, et al. Sagnac interferometer method for synthesis of fractional polarization vortices[J]. Opt Lett, 2009, 34(17): 2560−2562. doi: 10.1364/OL.34.002560

    CrossRef Google Scholar

    [58] Liu S, Li P, Peng T, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Opt Express, 2012, 20(19): 21715−21721. doi: 10.1364/OE.20.021715

    CrossRef Google Scholar

    [59] Li P, Zhang Y, Liu S, et al. Generation of perfect vectorial vortex beams[J]. Opt Lett, 2016, 41(10): 2205−2208. doi: 10.1364/OL.41.002205

    CrossRef Google Scholar

    [60] Liu S, Qi S X, Zhang Y, et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Res, 2018, 6(4): 228−233. doi: 10.1364/PRJ.6.000228

    CrossRef Google Scholar

    [61] Maurer C, Jesacher A, Fürhapter S, et al. Tailoring of arbitrary optical vector beams[J]. New J Phys, 2007, 9: 78. doi: 10.1088/1367-2630/9/3/078

    CrossRef Google Scholar

    [62] Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Opt Lett, 2007, 32(24): 3549−3551. doi: 10.1364/OL.32.003549

    CrossRef Google Scholar

    [63] Xie Y Y, Cheng Z J, Liu X, et al. Simple method for generation of vector beams using a small-angle birefringent beam splitter[J]. Opt Lett, 2015, 40(21): 5109−5112. doi: 10.1364/OL.40.005109

    CrossRef Google Scholar

    [64] Shen Y J, Martínez E C, Rosales-Guzmán C. Generation of optical skyrmions with tunable topological textures[J]. ACS Photonics, 2022, 9(1): 296−303. doi: 10.1021/acsphotonics.1c01703

    CrossRef Google Scholar

    [65] Moreno I, Davis J A, Cottrell D M, et al. Encoding high-order cylindrically polarized light beams[J]. Appl Opt, 2014, 53(24): 5493−5501. doi: 10.1364/AO.53.005493

    CrossRef Google Scholar

    [66] Fu S Y, Gao C Q, Shi Y, et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer[J]. Opt Lett, 2015, 40(8): 1775−1778. doi: 10.1364/OL.40.001775

    CrossRef Google Scholar

    [67] Fu S Y, Wang T L, Gao C Q. Generating perfect polarization vortices through encoding liquid-crystal display devices[J]. Appl Opt, 2016, 55(23): 6501−6505. doi: 10.1364/AO.55.006501

    CrossRef Google Scholar

    [68] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Phys Rev Lett, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905

    CrossRef Google Scholar

    [69] Yi X N, Ling X H, Zhang Z Y, et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces[J]. Opt Express, 2014, 22(14): 17207−17215. doi: 10.1364/OE.22.017207

    CrossRef Google Scholar

    [70] Fu S Y, Gao C Q, Wang T L, et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders[J]. Opt Lett, 2016, 41(23): 5454−5457. doi: 10.1364/OL.41.005454

    CrossRef Google Scholar

    [71] Yue F Y, Wen D D, Zhang C M, et al. Multichannel polarization-controllable superpositions of orbital angular momentum states[J]. Adv Mater, 2017, 29(15): 1603838. doi: 10.1002/adma.201603838

    CrossRef Google Scholar

    [72] Zhang X, Huang L L, Zhao R Z, et al. Multiplexed generation of generalized vortex beams with on-demand intensity profiles based on metasurfaces[J]. Laser Photonics Rev, 2022, 16(3): 2100451. doi: 10.1002/lpor.202100451

    CrossRef Google Scholar

    [73] Wu H S, Zeng Q J, Wang X R, et al. Polarization-dependent phase-modulation metasurface for vortex beam (de)multiplexing[J]. Nanophotonics, 2023, 12(6): 1129−1135. doi: 10.1515/nanoph-2022-0710

    CrossRef Google Scholar

    [74] 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    [75] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nat Photonics, 2016, 10(5): 327−332. doi: 10.1038/nphoton.2016.37

    CrossRef Google Scholar

    [76] Fan J T, Zhao J, Shi L P, et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator[J]. Adv Photonics, 2020, 2(4): 045001. doi: 10.1117/1.AP.2.4.045001

    CrossRef Google Scholar

    [77] Song R, Gao C Q, Zhou H, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm[J]. Opt Lett, 2020, 45(16): 4626−4629. doi: 10.1364/OL.400835

    CrossRef Google Scholar

    [78] Song R, Liu X T, Fu S Y, et al. Simultaneous tailoring of longitudinal and transverse mode inside an Er: YAG laser[J]. Chin Opt Lett, 2021, 19(11): 111404.

    Google Scholar

    [79] Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nat Photonics, 2020, 14(8): 498−503. doi: 10.1038/s41566-020-0623-z

    CrossRef Google Scholar

    [80] Shen Y J, Wang Z Y, Fu X, et al. SU(2) Poincare sphere: A generalized representation for multidimensional structured light[J]. Phys Rev A, 2020, 102(3): 031501. doi: 10.1103/PhysRevA.102.031501

    CrossRef Google Scholar

    [81] Shen Y J. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light[J]. J Opt, 2021, 23(12): 124004. doi: 10.1088/2040-8986/ac3676

    CrossRef Google Scholar

    [82] Chen Y F, Jiang C H, Lan Y P, et al. Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity[J]. Phys Rev A, 2004, 69(5): 053807. doi: 10.1103/PhysRevA.69.053807

    CrossRef Google Scholar

    [83] Dingjan J, van Exter M P, Woerdman J P. Geometric modes in a single-frequency Nd: YVO4 laser[J]. Opt Commun, 2001, 188(5-6): 345−351. doi: 10.1016/S0030-4018(00)01157-3

    CrossRef Google Scholar

    [84] Shen Y J, Yang X L, Fu X, et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator[J]. Appl Opt, 2018, 57(32): 9543−9549. doi: 10.1364/AO.57.009543

    CrossRef Google Scholar

    [85] Tung J C, Liang H C, Lu T H, et al. Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter[J]. Opt Express, 2016, 24(20): 22796−22805. doi: 10.1364/OE.24.022796

    CrossRef Google Scholar

    [86] Shen Y J, Yang X L, Naidoo D, et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum[J]. Optica, 2020, 7(12): 1705. doi: 10.1364/OPTICA.414397

    CrossRef Google Scholar

    [87] Wan Z S, Wang Z Y, Yang X L, et al. Digitally tailoring arbitrary structured light of generalized ray-wave duality[J]. Opt Express, 2020, 28(21): 31043−31056. doi: 10.1364/OE.400587

    CrossRef Google Scholar

    [88] Shen Y J, Nape I, Yang X L, et al. Creation and control of high-dimensional multi-partite classically entangled light[J]. Light Sci Appl, 2021, 10(1): 50. doi: 10.1038/s41377-021-00493-x

    CrossRef Google Scholar

    [89] Wang Z Y, Shen Y J, Naidoo D, et al. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics[J]. Opt Express, 2021, 29(1): 315−329. doi: 10.1364/OE.414674

    CrossRef Google Scholar

    [90] Wan Z S, Shen Y J, Liu Q, et al. Multipartite classically entangled scalar beams[J]. Opt Lett, 2022, 47(8): 2052−2055. doi: 10.1364/OL.451046

    CrossRef Google Scholar

    [91] Pan J, Wang Z Y, Zhan Z Y, et al. Multiaxial super-geometric mode laser[J]. Opt Lett, 2023, 48(7): 1630−1633. doi: 10.1364/OL.485163

    CrossRef Google Scholar

    [92] Wan Z S, Shen Y J, Wang Z Y, et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications[J]. Light Sci Appl, 2022, 11(1): 144. doi: 10.1038/s41377-022-00834-4.

    CrossRef Google Scholar

    [93] Hai L, Zhang Z C, Liu S L, et al. Intra-cavity laser manipulation of high-dimensional non-separable states[J]. Laser Photonics Rev, 2024, 18(4): 2300593. doi: 10.1002/lpor.202300593

    CrossRef Google Scholar

    [94] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810−816. doi: 10.1038/nature01935

    CrossRef Google Scholar

    [95] Fu S Y, Wang T L, Gao C Q. Perfect optical vortex array with controllable diffraction order and topological charge[J]. J Opt Soc America A, 2016, 33(9): 1836−1842. doi: 10.1364/JOSAA.33.001836

    CrossRef Google Scholar

    [96] Fu S Y, Zhang S K, Wang T L, et al. Rectilinear lattices of polarization vortices with various spatial polarization distributions[J]. Opt Express, 2016, 24(16): 18486−18491. doi: 10.1364/OE.24.018486

    CrossRef Google Scholar

    [97] Fu S Y, Gao C Q, Wang T L, et al. Detection of topological charges for coaxial multiplexed perfect vortices[C]//Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, 2017: 1–2. https://doi.org/10.1109/OECC.2017.8114895.

    Google Scholar

    [98] Wang H, Fu S Y, Gao C Q. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom[J]. Opt Express, 2021, 29(7): 10811−10824. doi: 10.1364/OE.422301

    CrossRef Google Scholar

    [99] Fu S Y, Wang T L, Zhang Z Y, et al. Selective acquisition of multiple states on hybrid Poincare sphere[J]. Appl Phys Lett, 2017, 110(19): 191102. doi: 10.1063/1.4983284

    CrossRef Google Scholar

    [100] Shang Z J, Fu S Y, Hai L, et al. Multiplexed vortex state array toward high-dimensional data multicasting[J]. Opt Express, 2022, 30(19): 34053−34063. doi: 10.1364/OE.466353

    CrossRef Google Scholar

    [101] Piccardo M, de Oliveira M, Toma A, et al. Vortex laser arrays with topological charge control and self-healing of defects[J]. Nat Photonics, 2022, 16(5): 359−365. doi: 10.1038/s41566-022-00986-0

    CrossRef Google Scholar

    [102] Yessenov M, Hall L A, Schepler K L, et al. Space-time wave packets[J]. Adv Opt Photonics, 2022, 14(3): 455−570. doi: 10.1364/AOP.450016

    CrossRef Google Scholar

    [103] Cao Q, Zhan Q W. Spatiotemporal sculpturing of light and recent development in spatiotemporal optical vortices wavepackets (Invited)[J]. Acta Photonica Sin, 2022, 51(1): 0151102. doi: 10.3788/gzxb20225101.0151102

    CrossRef Google Scholar

    [104] Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light Sci Appl, 2017, 6(7): e17011. doi: 10.1038/lsa.2017.11

    CrossRef Google Scholar

    [105] Ruffato G. Non-destructive OAM measurement via light-matter interaction[J]. Light Sci Appl, 2022, 11(1): 55. doi: 10.1038/s41377-022-00749-0

    CrossRef Google Scholar

    [106] Zhao Z, Song H, Zhang R Z, et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines[J]. Nat Commun, 2020, 11(1): 4099. doi: 10.1038/s41467-020-17805-1

    CrossRef Google Scholar

    [107] Chong A, Wan C H, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nat Photonics, 2020, 14(6): 350−354. doi: 10.1038/s41566-020-0587-z

    CrossRef Google Scholar

    [108] Wan C H, Chen J, Chong A, et al. Photonic orbital angular momentum with controllable orientation[J]. Natl Sci Rev, 2022, 9(7): nwab149. doi: 10.1093/nsr/nwab149

    CrossRef Google Scholar

    [109] Cao Q, Zheng P K, Zhan Q W. Vectorial sculpturing of spatiotemporal wavepackets[J]. APL Photonics, 2022, 7(9): 096102. doi: 10.1063/5.0107411

    CrossRef Google Scholar

    [110] Wan C H, Cao Q, Chen J, et al. Toroidal vortices of light[J]. Nat Photonics, 2022, 16(7): 519−522. doi: 10.1038/s41566-022-01013-y

    CrossRef Google Scholar

    [111] Chen W, Liu Y, Yu A Z, et al. Observation of chiral symmetry breaking in toroidal vortices of light[J]. Phys Rev Lett, 2024, 132(15): 153801. doi: 10.1103/PhysRevLett.132.153801

    CrossRef Google Scholar

    [112] Papasimakis N, Raybould T, Fedotov V A, et al. Pulse generation scheme for flying electromagnetic doughnuts[J]. Phys Rev B, 2018, 97(20): 201409. doi: 10.1103/PhysRevB.97.201409

    CrossRef Google Scholar

    [113] Shen Y J, Yu B S, Wu H J, et al. Topological transformation and free-space transport of photonic hopfions[J]. Adv Photonics, 2023, 5(1): 015001. doi: 10.1117/1.AP.5.1.015001

    CrossRef Google Scholar

    [114] Zdagkas A, McDonnell C, Deng J H, et al. Observation of toroidal pulses of light[J]. Nat Photonics, 2022, 16(7): 523−528. doi: 10.1038/s41566-022-01028-5

    CrossRef Google Scholar

    [115] Guo C, Xiao M, Orenstein M, et al. Structured 3D linear space-time light bullets by nonlocal nanophotonics[J]. Light Sci Appl, 2021, 10(1): 160. doi: 10.1038/s41377-021-00595-6

    CrossRef Google Scholar

  • By tailoring single or multiple degrees of freedom, structured beams with novel physical properties have gained numerous interests. With the development of modern optics, the increasing advanced applications require more DoFs of laser field to be coupled and flexibly manipulated. Among the various DoFs, SAM, as an intrinsic DoF, has been applied to modulate vector beams. While OAM, as an emerging DoF, decides the vortex beams with helical phase. The coupling of above two enabling the construction of high-dimensional Hilbert space, forms the vector vortex beams with phase and polarization singularities, which has already found broad applications in domains like ultra-large capacity optical communication, remote sensing detection and quantum communication. Besides the vector vortex beams, most structured beams are manipulated by only one or two coupled DoFs, like ray-wave structured light and spatiotemporal light. The ability to simultaneously tailor more DoFs and generate a family of complex structured beams is crucial in the cutting-edge realm. The non-separable states, optical skyrmions and photonic hopfions can be seen as the typical instance. However, there is still a significant challenge to integrate the novel degrees of freedom with the traditional degrees of freedom, limiting the extension and expansion of high-dimensional and multi-dimensional structured beams. In this paper, from the perspective of extent of the multi-DoFs coupling, we systematically review the manipulation methods and a series of corresponding structured beams. Begin with the SAM-OAM coupled vectorial vortex beams, the principle and representation is briefly presented. Classified by the generation mechanism, the extra-cavity and intra-cavity manipulation methods are also summarized. The extra-cavity generation is mainly achieved by combining orthogonally polarized beams with different OAMs, while the intra-cavity manipulation is achieved by inserting SAM-OAM coupling devices like Q-Plate and metasurface. Further, the "super-degree-of-freedom" complex structured light field, denoting the three and more DoFs combined beams, are introduced here: A bunch of SU(2) beams have the unique properties as ray-wave duality, capable of unveiling more flexibly controlled DoFs; complex vortex arrays, manipulated with the path DoF, can be simply achieved by the diffractive optical elements; spatiotemporal vortex beams has extending the OAM to time domain. Such structured beams have already exploited more than five DoFs. Of course, due to the abundant degrees of freedom of the light field and the various ways of combination, this paper does not cover all the complex structured light fields, but selects the most representative and common structured light fields with great practical value, and it is not difficult to find the possibility of further expansion of the degree of freedom in the further study.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint