Liu S H, Zhang L T, Xie W F. Solution processed organic light-emitting devices: structure, device physics and fabrication process[J]. Opto-Electron Eng, 2022, 49(5): 210407. doi: 10.12086/oee.2022.210407
Citation: Liu S H, Zhang L T, Xie W F. Solution processed organic light-emitting devices: structure, device physics and fabrication process[J]. Opto-Electron Eng, 2022, 49(5): 210407. doi: 10.12086/oee.2022.210407

Solution processed organic light-emitting devices: structure, device physics and fabrication process

    Fund Project: National Natural Science Foundation of China (61905086,62174067,62175085), and Natural Science Foundation of Jilin Province (20190101024JH, 20200201296JC)
More Information
  • The industrialization of organic light-emitting devices (OLEDs) in the field of lighting still faces the challenge of high costs, while solution-processed OLEDs can dramatically reduce their manufacturing cost. However, compared with thermally evaporated OLEDs, solution-processed OLEDs encounter difficulty in building multilayer systems. As the relevant reviews on solution-processed OLED from the perspective of material engineering have been proposed, this paper will mainly summarize multilayer structures of solution-processed OLED from the aspects of device physics and preparation processes. First, we will analyze the necessity of each functional layer based on the carrier/exciton dynamics and optical physics. Next, we will introduce the commonly used solution-processing techniques and discuss the problems involved in the preparation of multilayer films. Finally, we will present the future prospects of solution-processed OLEDs.
  • 加载中
  • [1] Pattison M, Hansen M, Bardsley N, et al. 2019 lighting R&D opportunities[R]. Santa Barbara: Solid State Lighting Solutions (SSLS) Inc. , 2020. doi: 10.2172/1618035.

    Google Scholar

    [2] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51(12): 913−915. doi: 10.1063/1.98799

    CrossRef Google Scholar

    [3] Liao L S, Klubek K P, Tang C W. High-efficiency tandem organic light-emitting diodes[J]. Appl Phys Lett, 2004, 84(2): 167−169. doi: 10.1063/1.1638624

    CrossRef Google Scholar

    [4] Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428): 234−238. doi: 10.1038/nature11687

    CrossRef Google Scholar

    [5] Gather M C, Köhnen A, Meerholz K. White organic light-emitting diodes[J]. Adv Mater, 2011, 23(2): 233−248. doi: 10.1002/adma.201002636

    CrossRef Google Scholar

    [6] Wen X M, Bi Y G, Yi F S, et al. Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes[J]. Opto-Electron Adv, 2021, 4(8): 200024. doi: 10.29026/oea.2021.200024

    CrossRef Google Scholar

    [7] Liu S H, Liu W B, Yu J, et al. Silver/germanium/silver: an effective transparent electrode for flexible organic light-emitting devices[J]. J Mater Chem C, 2014, 2(5): 835−840. doi: 10.1039/C3TC31927J

    CrossRef Google Scholar

    [8] Li Z T, Cao K, Li J S, et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure[J]. Opto-Electron Adv, 2021, 4(2): 200019. doi: 10.29026/oea.2021.200019

    CrossRef Google Scholar

    [9] Wang Y, Liu S H, Dang F Y, et al. An efficient flexible white organic light-emitting device with a screen-printed conducting polymer anode[J]. J Phys D Appl Phys, 2012, 45(40): 402002. doi: 10.1088/0022-3727/45/40/402002

    CrossRef Google Scholar

    [10] Zhang X, Liu S H, Zhang L T, et al. In-planar-electrodes organic light-emitting devices for smart lighting applications[J]. Adv Opt Mater, 2019, 7(3): 1800857. doi: 10.1002/adom.201800857

    CrossRef Google Scholar

    [11] Liu S H, Zhang X, Wang S R, et al. Hybrid organic light-emitting device based on ultrasonic spray-coating molybdenum trioxide transport layer with low turn-on voltage, improved efficiency & stability[J]. Org Electron, 2018, 52: 264−271. doi: 10.1016/j.orgel.2017.10.041

    CrossRef Google Scholar

    [12] Liu S H, Zhang X, Feng H W, et al. Two-dimensional-growth small molecular hole-transporting layer by ultrasonic spray coating for organic light-emitting devices[J]. Org Electron, 2017, 47: 181−188. doi: 10.1016/j.orgel.2017.05.024

    CrossRef Google Scholar

    [13] Liu W B, Liu S H, Zhang W, et al. Angle-stable inverted top-emitting white organic light-emitting devices based on gradient-doping electron injection interlayer[J]. Org Electron, 2015, 25: 335−339. doi: 10.1016/j.orgel.2015.07.012

    CrossRef Google Scholar

    [14] Zang C X, Liu S H, Xu M X, et al. Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling[J]. Light Sci Appl, 2021, 10(1): 116. doi: 10.1038/s41377-021-00559-w

    CrossRef Google Scholar

    [15] Zhang X, Pan T, Zhang J X, et al. Color-tunable, spectra-stable flexible white top-emitting organic light-emitting devices based on alternating current driven and dual-microcavity technology[J]. ACS Photonics, 2019, 6(9): 2350−2357. doi: 10.1021/acsphotonics.9b00900

    CrossRef Google Scholar

    [16] Yin M J, Pan T, Yu Z W, et al. Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer[J]. Org Electron, 2018, 62: 407−411. doi: 10.1016/j.orgel.2018.08.036

    CrossRef Google Scholar

    [17] Liu S H, Wen X M, Liu W B, et al. Angle-stable top-emitting white organic light-emitting devices employing a down-conversion layer[J]. Curr Appl Phys, 2014, 14(11): 1451−1454. doi: 10.1016/j.cap.2014.08.003

    CrossRef Google Scholar

    [18] Yu Z W, Feng H W, Zhang J X, et al. Carrier transport manipulation for efficiency enhancement in blue phosphorescent organic light-emitting devices with a 4, 4′-bis (N-carbazolyl)-2, 2′-biphenyl host[J]. J Mater Chem C, 2019, 7(30): 9301−9307. doi: 10.1039/C8TC06265J

    CrossRef Google Scholar

    [19] Zhang X, Liu S H, Zhang Y Q, et al. Efficiently alternating current driven tandem organic light-emitting devices with (Ag/4, 7-diphenyl-1, 10-phenanthroline)n interconnecting layers[J]. Appl Phys Lett, 2017, 111(10): 103301. doi: 10.1063/1.5001842

    CrossRef Google Scholar

    [20] Zang C X, Xu M X, Zhang L T, et al. Organic-inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics[J]. J Mater Chem C, 2021, 9(5): 1484−1519. doi: 10.1039/D0TC05059H

    CrossRef Google Scholar

    [21] Peng J H, Xu X J, Feng X J, et al. Fabrication of solution-processed pure blue fluorescent OLED using exciplex host[J]. J Lumin, 2018, 198: 19−23. doi: 10.1016/j.jlumin.2018.02.010

    CrossRef Google Scholar

    [22] He Z Y, Wang C Y, Zhao J W, et al. Blue and white solution-processed TADF-OLEDs with over 20% EQE, low driving voltages and moderate efficiency decrease based on interfacial exciplex hosts[J]. J Mater Chem C, 2019, 7(38): 11806−11812. doi: 10.1039/C9TC03468D

    CrossRef Google Scholar

    [23] Park S Y, Choi S, Park G E, et al. Unconventional three-armed luminogens exhibiting both aggregation-induced emission and thermally activated delayed fluorescence resulting in high-performing solution-processed organic light-emitting diodes[J]. ACS Appl Mater Interfaces, 2018, 10(17): 14966−14977. doi: 10.1021/acsami.7b19681

    CrossRef Google Scholar

    [24] Tang C, Yang T, Cao X D, et al. Tuning a weak emissive blue host to highly efficient green dopant by a CN in tetracarbazolepyridines for solution-processed thermally activated delayed fluorescence devices[J]. Adv Opt Mater, 2015, 3(6): 786−790. doi: 10.1002/adom.201500016

    CrossRef Google Scholar

    [25] Kim Y H, Wolf C, Cho H, et al. Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes[J]. Adv Mater, 2016, 28(4): 734−741. doi: 10.1002/adma.201504490

    CrossRef Google Scholar

    [26] Li B, Yang Z, Gong W Q, et al. Intramolecular through-space charge transfer based TADF-active multifunctional emitters for high efficiency solution-processed OLED[J]. Adv Opt Mater, 2021, 9(15): 2100180. doi: 10.1002/adom.202100180

    CrossRef Google Scholar

    [27] Sun K Y, Liu D, Tian W W, et al. Manipulation of the sterically hindering effect to realize AIE and TADF for high-performing nondoped solution-processed OLEDs with extremely low efficiency roll-off[J]. J Mater Chem C, 2020, 8(34): 11850−11859. doi: 10.1039/D0TC02577A

    CrossRef Google Scholar

    [28] Usta H, Alimli D, Ozdemir R, et al. A hybridized local and charge transfer excited state for solution-processed non-doped green electroluminescence based on oligo (p-phenyleneethynylene)[J]. J Mater Chem C, 2020, 8(24): 8047−8060. doi: 10.1039/D0TC01266A

    CrossRef Google Scholar

    [29] Aizawa N, Pu Y J, Watanabe M, et al. Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission[J]. Nat Commun, 2014, 5(1): 5756. doi: 10.1038/ncomms6756

    CrossRef Google Scholar

    [30] Pu Y J, Chiba T, Ideta K, et al. Fabrication of organic light-emitting devices comprising stacked light-emitting units by solution-based processes[J]. Adv Mater, 2015, 27(8): 1327−1332. doi: 10.1002/adma.201403973

    CrossRef Google Scholar

    [31] Chiba T, Pu Y J, Kido J. Solution-processed white phosphorescent tandem organic light-emitting devices[J]. Adv Mater, 2015, 27(32): 4681−4687. doi: 10.1002/adma.201501866

    CrossRef Google Scholar

    [32] Ho S, Liu S Y, Chen Y, et al. Review of recent progress in multilayer solution-processed organic light-emitting diodes[J]. J Photonics Energy, 2015, 5(1): 057611. doi: 10.1117/1.JPE.5.057611

    CrossRef Google Scholar

    [33] Zhong C M, Duan C H, Huang F, et al. Materials and devices toward fully solution processable organic light-emitting diodes[J]. Chem Mater, 2011, 23(3): 326−340. doi: 10.1021/cm101937p

    CrossRef Google Scholar

    [34] Li Y, Zhang D Q, Duan L, et al. Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes[J]. Appl Phys Lett, 2007, 90(1): 012119. doi: 10.1063/1.2429920

    CrossRef Google Scholar

    [35] Liu W B, Liu S H, Yu J, et al. Efficient inverted organic light-emitting devices with self or intentionally Ag-doped interlayer modified cathode[J]. Appl Phys Lett, 2014, 104(9): 093305. doi: 10.1063/1.4868031

    CrossRef Google Scholar

    [36] Tokito S, Suzuki M, Sato F, et al. High-efficiency phosphorescent polymer light-emitting devices[J]. Org Electron, 2003, 4(2-3): 105−111. doi: 10.1016/j.orgel.2003.08.005

    CrossRef Google Scholar

    [37] Burns S, MacLeod J, Do T T, et al. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs[J]. Sci Rep, 2017, 7(1): 40805. doi: 10.1038/srep40805

    CrossRef Google Scholar

    [38] Al-Attar H A, Griffiths G C, Moore T N, et al. Highly efficient, solution-processed, single-layer, electrophosphorescent diodes and the effect of molecular dipole moment[J]. Adv Funct Mater, 2011, 21(12): 2376−2382. doi: 10.1002/adfm.201100324

    CrossRef Google Scholar

    [39] Cai M, Xiao T, Hellerich E, et al. High-efficiency solution-processed small molecule electrophosphorescent organic light-emitting diodes[J]. Adv Mater, 2011, 23(31): 3590−3596. doi: 10.1002/adma.201101154

    CrossRef Google Scholar

    [40] Hwang J, Lee C, Jeong J E, et al. Rational design of carbazole-and carboline-based polymeric host materials for realizing high-efficiency solution-processed thermally activated delayed fluorescence organic light-emitting diode[J]. ACS Appl Mater Interfaces, 2020, 12(7): 8485−8494. doi: 10.1021/acsami.9b20279

    CrossRef Google Scholar

    [41] Fukagawa H, Sasaki T, Tsuzuki T, et al. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes[J]. Adv Mater, 2018, 30(28): 1706768. doi: 10.1002/adma.201706768

    CrossRef Google Scholar

    [42] Kwon S J, Han T H, Kim Y H, et al. Solution-processed n-type graphene doping for cathode in inverted polymer light-emitting diodes[J]. ACS Appl Mater Interfaces, 2018, 10(5): 4874−4881. doi: 10.1021/acsami.7b15307

    CrossRef Google Scholar

    [43] Chen J S, Shi C S, Fu Q, et al. Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs[J]. J Mater Chem, 2012, 22(11): 5164−5170. doi: 10.1039/C2JM16463A

    CrossRef Google Scholar

    [44] Zhang J X, Zhang X, Feng H W, et al. An efficient and stable hybrid organic light-emitting device based on an inorganic metal oxide hole transport layer and an electron transport layer[J]. J Mater Chem C, 2019, 7(7): 1991−1998. doi: 10.1039/C8TC06135A

    CrossRef Google Scholar

    [45] Zang C X, Wang H, Liu S H, et al. Efficiency enhancement in an inverted organic light-emitting device with a TiO2 electron injection layer through interfacial engineering[J]. J Mater Chem C, 2020, 8(24): 8206−8212. doi: 10.1039/D0TC01040E

    CrossRef Google Scholar

    [46] Ohisa S, Takahashi T, Igarashi M, et al. An indolocarbazole-based thermally activated delayed fluorescence host for solution-processed phosphorescent tandem organic light-emitting devices exhibiting extremely small efficiency roll-off[J]. Adv Funct Mater, 2019, 29(16): 1808022. doi: 10.1002/adfm.201808022

    CrossRef Google Scholar

    [47] Höfle S, Bernhard C, Bruns M, et al. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture[J]. ACS Appl Mater Interfaces, 2015, 7(15): 8132−8137. doi: 10.1021/acsami.5b00883

    CrossRef Google Scholar

    [48] Khramtchenkov D V, Bässler H, Arkhipov V I. A model of electroluminescence in organic double-layer light-emitting diodes[J]. J Appl Phys, 1996, 79(12): 9283−9290. doi: 10.1063/1.362604

    CrossRef Google Scholar

    [49] Nikitenko V R, Arkhipov V I, Tak Y H, et al. The overshoot effect in transient electroluminescence from organic bilayer light emitting diodes: Experiment and theory[J]. J Appl Phys, 1997, 81(11): 7514−7525. doi: 10.1063/1.365293

    CrossRef Google Scholar

    [50] Hassine L, Bouchriha H, Roussel J, et al. Transient response of a bilayer organic electroluminescent diode: experimental and theoretical study of electroluminescence onset[J]. Appl Phys Lett, 2001, 78(8): 1053−1055. doi: 10.1063/1.1350419

    CrossRef Google Scholar

    [51] Hassine L, Bouchriha H, Roussel J, et al. Transient response of a bilayer organic light emitting diode: Building-up of external and recombination currents[J]. J Appl Phys, 2002, 91(8): 5170−5175. doi: 10.1063/1.1464212

    CrossRef Google Scholar

    [52] Lee J H, Lee S, Yoo S J, et al. Langevin and trap-assisted recombination in phosphorescent organic light emitting diodes[J]. Adv Funct Mater, 2014, 24(29): 4681−4688. doi: 10.1002/adfm.201303453

    CrossRef Google Scholar

    [53] Wang B Q, Kou Z Q, Tang Y, et al. High CRI and stable spectra white organic light-emitting diodes with double doped blue emission layers and multiple ultrathin phosphorescent emission layers by adjusting the thickness of spacer layer[J]. Org Electron, 2019, 70: 149−154. doi: 10.1016/j.orgel.2019.04.013

    CrossRef Google Scholar

    [54] Park Y S, Lee S, Kim K H, et al. Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency[J]. Adv Funct Mater, 2013, 23(39): 4914−4920. doi: 10.1002/adfm.201300547

    CrossRef Google Scholar

    [55] Xu H W, Lin J Y, Jiang X X, et al. Study on the difference in exciton generation processes for a single host and exciplex-type co-host[J]. Opt Lett, 2021, 46(19): 4840−4843. doi: 10.1364/OL.439516

    CrossRef Google Scholar

    [56] Qu Y, Kim J, Coburn C, et al. Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays[J]. ACS Photonics, 2018, 5(6): 2453−2458. doi: 10.1021/acsphotonics.8b00255

    CrossRef Google Scholar

    [57] Sahu N, Parija B, Panigrahi S. Fundamental understanding and modeling of spin coating process: a review[J]. Indian J Phys, 2009, 83(4): 493−502. doi: 10.1007/s12648-009-0009-z

    CrossRef Google Scholar

    [58] Liu S H, Wang Y C, Chang C M, et al. Solution-processed organometallic quasi-two-dimensional nanosheets as a hole buffer layer for organic light-emitting devices[J]. Nanoscale, 2020, 12(13): 6983−6990. doi: 10.1039/D0NR00240B

    CrossRef Google Scholar

    [59] Guan Z Q, Li Y, Zhu Z H, et al. Efficient perovskite white light-emitting diode based on an interfacial charge-confinement structure[J]. ACS Appl Mater Interfaces, 2021, 13(37): 44991−45000. doi: 10.1021/acsami.1c09715

    CrossRef Google Scholar

    [60] Feng H W, Liu S H, Tang G, et al. Highly efficient and stable quantum dot light-emitting devices with a low-temperature tin oxide electron transport layer[J]. J Mater Chem C, 2021, 9(39): 13748−13754. doi: 10.1039/D1TC03073F

    CrossRef Google Scholar

    [61] Bangsund J S, Van Sambeek J R, Concannon N M, et al. Sub-turn-on exciton quenching due to molecular orientation and polarization in organic light-emitting devices[J]. Sci Adv, 2020, 6(32): eabb2659. doi: 10.1126/sciadv.abb2659

    CrossRef Google Scholar

    [62] Liu S H, Yu H W, Zhang Q Y, et al. Efficient ITO-free organic light-emitting devices with dual-functional PSS-rich PEDOT: PSS electrode by enhancing carrier balance[J]. J Mater Chem C, 2019, 7(18): 5426−5432. doi: 10.1039/C9TC00648F

    CrossRef Google Scholar

    [63] Girotto C, Moia D, Rand B P, et al. High-performance organic solar cells with spray-coated hole-transport and active layers[J]. Adv Funct Mater, 2011, 21(1): 64−72. doi: 10.1002/adfm.201001562

    CrossRef Google Scholar

    [64] Liu S H, Zhang X, Zhang L T, et al. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices[J]. Sci Rep, 2016, 6(1): 37042. doi: 10.1038/srep37042

    CrossRef Google Scholar

    [65] Liu S H, Zhang X, Yin M J, et al. Coffee-ring-free ultrasonic spray coating single-emission layers for white organic light-emitting devices and their energy-transfer mechanism[J]. ACS Appl Energy Mater, 2018, 1(1): 103−112. doi: 10.1021/acsaem.7b00011

    CrossRef Google Scholar

    [66] Yeh H C, Meng H F, Lin H W, et al. All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating[J]. Org Electron, 2012, 13(5): 914−918. doi: 10.1016/j.orgel.2012.02.001

    CrossRef Google Scholar

    [67] Deng Y H, Zheng X P, Bai Y, et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules[J]. Nat Energy, 2018, 3(7): 560−566. doi: 10.1038/s41560-018-0153-9

    CrossRef Google Scholar

    [68] Yu H W, Zhang J M, Long T, et al. Efficient all-blade-coated quantum dot light-emitting diodes through solvent engineering[J]. J Phys Chem Lett, 2020, 11(21): 9019−9025. doi: 10.1021/acs.jpclett.0c02419

    CrossRef Google Scholar

    [69] Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors[J]. Adv Mater, 2017, 29(22): 1606206. doi: 10.1002/adma.201606206

    CrossRef Google Scholar

    [70] Amruth C, Szymański M Z, Łuszczyńska B, et al. Inkjet printing of super yellow: ink formulation, film optimization, OLEDs fabrication, and transient electroluminescence[J]. Sci Rep, 2019, 9(1): 8493. doi: 10.1038/s41598-019-44824-w

    CrossRef Google Scholar

    [71] Kang Y J, Bail R, Lee C W, et al. Inkjet printing of mixed-host emitting layer for electrophosphorescent organic light-emitting diodes[J]. ACS Appl Mater Interfaces, 2019, 11(24): 21784−21794. doi: 10.1021/acsami.9b04675

    CrossRef Google Scholar

    [72] Du Z Z, Liu Y K, Xing X, et al. Inkjet printing multilayer OLEDs with high efficiency based on the blurred interface[J]. J Phys D Appl Phys, 2020, 53(35): 355105. doi: 10.1088/1361-6463/ab86e1

    CrossRef Google Scholar

    [73] Yang P H, Zhang L, Kang D J, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays[J]. Adv Opt Mater, 2020, 8(1): 1901429. doi: 10.1002/adom.201901429

    CrossRef Google Scholar

    [74] Chen Z X, Li F S, Zeng Q Y, et al. Inkjet-printed pixelated light-emitting electrochemical cells based on cationic Ir(III) complexes[J]. Org Electron, 2019, 69: 336−342. doi: 10.1016/j.orgel.2019.03.046

    CrossRef Google Scholar

    [75] Yin Y M, Hu Z P, Ali M U, et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers[J]. Adv Mater Technol, 2020, 5(8): 2000251. doi: 10.1002/admt.202000251

    CrossRef Google Scholar

    [76] Chen H, Ye F, Tang W T, et al. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules[J]. Nature, 2017, 550(7674): 92−95. doi: 10.1038/nature23877

    CrossRef Google Scholar

  • In this paper, we reviewed multilayer structures of the solution-processed organic light-emitting devices (OLEDs), including normal structure, inverted structure, and tandem structure. From a physical point of view, we discussed and summarized that those multilayer structures are important to improve current balance. The improved current balance can reduce internal accumulations of carriers or current leakages, both of which are detrimental to the device's efficiency and lifetime. We also discussed that multilayer structures are necessary to avoid coupling between dipole sources and surface plasmon polariton (SPP) at the metal-dielectric interface. Thus, we concluded that multilayer structures actually play a key role in achieving solution-processed OLEDs with high performances.

    Next, we summarized four solution-processing technologies for OLEDs: spin coating process, spray coating process, blade coating process, and inkjet printing process, as well as their problems involved in preparing multilayer structures. Due to self-leveling under centrifugal force, spin-coated films have a huge advantage in film uniformity. With the aid of the orthogonal solvent system and cross-linked material strategy, the spin coating process can prepare multilayer structures. But the two strategies may cause the problems such as carrier trap and accumulation, which would degrade the device's performances. Besides, due to the capillary flow and Marangoni flow, spray coating process, blade coating process, and inkjet printing process require the add of a surfactant or dual solvent systems to prepare uniform films. In addition, the amount of liquid film and its drying rate can be precisely controlled by the blade coating process and inkjet printing process. As a result, solution-processed multilayer structures can be achieved by the two fabrication processes without using the orthogonal solvent system and crosslinking material strategy. But they are still limited by equipment precision and solvent characteristics.

    In conclusion, multilayer structures are necessary to achieve high-performance for solution-processed OLEDs. It is demonstrated that the existing solution-processing technologies can prepare multilayer structures for OLEDs. However, due to similar polarities of organic molecules, the existing solution-processing technologies still have problems with the universality of multilayer structures. The advantage of the existing solution-processing technologies with low costs is that it does not rely on high vacuum, and their problems are mainly caused by the use of solvent. In the field of perovskite, Professor Han Liyuan's team developed a new solvent-free and non-vacuum deposition process for the preparation of methyl ammonium halide lead perovskite film, namely, soft pressure processing. This process can not only retain the low-cost advantages of the existing solution-processing technologies, but also avoid the problems caused by the introduction of solvents. Thus, this process could have great potential in the preparation of low-cost multi-layer OLEDs.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint