Citation: | Zhang C, Wen T, Liu Z Z, et al. Research and application advances of photo-responsive droplet manipulation functional surface[J]. Opto-Electron Eng, 2023, 50(3): 220326. doi: 10.12086/oee.2023.220326 |
[1] | 徐广春, 顾中言, 徐德进, 等. 稻叶表面特性及雾滴在倾角稻叶上的沉积行为[J]. 中国农业科学, 2014, 47(21): 4280−4290. doi: 10.3864/j.issn.0578-1752.2014.21.013 Xu G C, Gu Z Y, Xu D J, et al. Characteristics of rice leaf surface and droplets deposition behavior on rice leaf surface with different inclination angles[J]. Sci Agric Sin, 2014, 47(21): 4280−4290. doi: 10.3864/j.issn.0578-1752.2014.21.013 |
[2] | Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7): 85−89. doi: 10.1038/nature17189 |
[3] | Cheng Q F, Li M Z, Zheng Y M, et al. Janus interface materials: Superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf[J]. Soft Matter, 2011, 7(13): 5948−5951. doi: 10.1039/c1sm05452j |
[4] | Lu Y, Sathasivam S, Song J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226): 1132−1135. doi: 10.1126/science.aaa0946 |
[5] | Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. J Mater Chem A, 2017, 5(1): 31−55. doi: 10.1039/C6TA07984A |
[6] | Li X J, Jiang C M, Zhao F N, et al. A self-charging device with bionic self-cleaning interface for energy harvesting[J]. Nano Energy, 2020, 73: 104738. doi: 10.1016/j.nanoen.2020.104738 |
[7] | Sun G, Fang Y, Cong Q, et al. Anisotropism of the non-smooth surface of butterfly wing[J]. J Bionic Eng, 2009, 6(1): 71−76. doi: 10.1016/S1672-6529(08)60094-3 |
[8] | Mei M, Luo D, Guo P, et al. Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency[J]. Soft Matter, 2011, 7(22): 10569−10573. doi: 10.1039/c1sm06347b |
[9] | Ju J, Zheng Y M, Jiang L. Bioinspired one-dimensional materials for directional liquid transport[J]. Acc Chem Res, 2014, 47(8): 2342−2352. doi: 10.1021/ar5000693 |
[10] | Ju J, Bai H, Zheng Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat Commun, 2012, 3: 1247. doi: 10.1038/ncomms2253 |
[11] | Bai F, Wu J T, Gong G M, et al. Biomimetic “cactus spine” with hierarchical groove structure for efficient fog collection[J]. Adv Sci, 2015, 2(7): 1500047. doi: 10.1002/advs.201500047 |
[12] | Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33−34. doi: 10.1038/35102108 |
[13] | Nørgaard T, Dacke M. Fog-basking Behaviour and water collection efficiency in Namib desert darkling beetles[J]. Front Zool, 2010, 7: 23. doi: 10.1186/1742-9994-7-23 |
[14] | Guadarrama-Cetina J, Mongruel A, Medici M G, et al. Dew condensation on desert beetle skin[J]. Eur Phys J E, 2014, 37(11): 109. doi: 10.1140/epje/i2014-14109-y |
[15] | Chiou P Y, Moon H, Toshiyoshi H, et al. Light actuation of liquid by optoelectrowetting[J]. Sens Actuators A Phys, 2003, 104(3): 222−228. doi: 10.1016/S0924-4247(03)00024-4 |
[16] | Huang G Y, Li M X, Yang Q Z, et al. Magnetically actuated droplet manipulation and its potential biomedical applications[J]. ACS Appl Mater Interfaces, 2017, 9(2): 1155−1166. doi: 10.1021/acsami.6b09017 |
[17] | Lv P, Zhang Y L, Han D D, et al. Directional droplet transport on functional surfaces with superwettabilities[J]. Adv Mater Interfaces, 2021, 8(12): 2100043. doi: 10.1002/admi.202100043 |
[18] | Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Adv Mater, 2002, 14(24): 1857−1860. doi: 10.1002/adma.200290020 |
[19] | Zhang S N, Huang J Y, Chen Z, et al. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications[J]. Small, 2017, 13(3): 1602992. doi: 10.1002/smll.201602992 |
[20] | Li S H, Li H J, Wang X B, et al. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes[J]. J Phys Chem B, 2002, 106(36): 9274−9276. doi: 10.1021/jp0209401 |
[21] | Yang J T, Chen J C, Huang K J, et al. Droplet manipulation on a hydrophobic textured surface with roughened patterns[J]. J Microelectromech Syst, 2006, 15(3): 697−707. doi: 10.1109/JMEMS.2006.876791 |
[22] | Zheng Y M, Bai H, Huang Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640−643. doi: 10.1038/nature08729 |
[23] | Ghosh A, Ganguly R, Schutzius T M, et al. Wettability patterning for high-rate, Pumpless fluid transport on open, non-planar microfluidic platforms[J]. Lab Chip, 2014, 14(9): 1538−1550. doi: 10.1039/C3LC51406D |
[24] | Li A, Li H Z, Li Z, et al. Programmable droplet manipulation by a magnetic-actuated robot[J]. Sci Adv, 2020, 6(7): eaay5808. doi: 10.1126/sciadv.aay5808 |
[25] | Gao A T, Butt H J, Steffen W, et al. Optical manipulation of liquids by thermal Marangoni flow along the air−water interfaces of a superhydrophobic surface[J]. Langmuir, 2021, 37(29): 8677−8686. doi: 10.1021/acs.langmuir.1c00539 |
[26] | Malvadkar N A, Hancock M J, Sekeroglu K, et al. An engineered anisotropic Nanofilm with unidirectional wetting properties[J]. Nat Mater, 2010, 9(12): 1023−1028. doi: 10.1038/nmat2864 |
[27] | Tian D L, Zhang N, Zheng X, et al. Fast responsive and controllable liquid transport on a magnetic fluid/Nanoarray composite interface[J]. ACS Nano, 2016, 10(6): 6220−6226. doi: 10.1021/acsnano.6b02318 |
[28] | Cheng Z J, Zhang D J, Lv T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Adv Funct Mater, 2018, 28(7): 1705002. doi: 10.1002/adfm.201705002 |
[29] | Rao Q Q, Li A, Zhang J W, et al. Multi-functional fluorinated ionic liquid infused slippery surfaces with dual-responsive wettability switching and self-repairing[J]. J Mater Chem A, 2019, 7(5): 2172−2183. doi: 10.1039/C8TA08956F |
[30] | Yang D Q, Piech M, Bell N, et al. Photon control of liquid motion on reversibly photoresponsive surfaces[J]. Langmuir, 2007, 23(21): 10864−10872. doi: 10.1021/la701507r |
[31] | Diguet A, Guillermic R M, Magome N, et al. Photomanipulation of a droplet by the chromocapillary effect[J]. Angew Chem Int Ed, 2009, 48(49): 9281−9284. doi: 10.1002/anie.200904868 |
[32] | Ichikawa M, Takabatake F, Miura K, et al. Controlling negative and positive photothermal migration of centimeter-sized droplets[J]. Phys Rev E, 2013, 88(1): 012403. doi: 10.1103/PhysRevE.88.012403 |
[33] | Kwon G, Panchanathan D, Mahmoudi S R et al. Visible light guided manipulation of liquid wettability on photoresponsive surfaces[J]. Nat Commun, 2017, 8(1): 14968. doi: 10.1038/ncomms14968 |
[34] | Siewierski L M, Brittain W J, Petrash S, et al. Photoresponsive monolayers containing in-chain azobenzene[J]. Langmuir, 1996, 12(24): 5838−5844. doi: 10.1021/la960506o |
[35] | Ichimura K, Oh S K, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface[J]. Science, 2000, 288(5471): 1624−1626. doi: 10.1126/science.288.5471.1624 |
[36] | Berná J, Leigh D A, Lubomska M, et al. Macroscopic transport by synthetic molecular machines[J]. Sci Mater, 2005, 4(9): 704−710. doi: 10.1038/nmat1455 |
[37] | Wang J, Gao W, Zhang H, et al. Programmable wettability on photocontrolled graphene film[J]. Sci Adv, 2018, 4(9): eaat7392. doi: 10.1126/sciadv.aat7392 |
[38] | Wu S Z, Zhou L L, Chen C, et al. Photothermal actuation of diverse liquids on an Fe3O4-doped slippery surface for electric switching and cell culture[J]. Langmuir, 2019, 35(43): 13915−13922. doi: 10.1021/acs.langmuir.9b02068 |
[39] | Li W, Tang X, Wang L Q. Photopyroelectric microfluidics[J]. Sci Adv, 2020, 6(38): eabc1693. doi: 10.1126/sciadv.abc1693 |
[40] | Bai X, Yong J L, Shan C, et al. Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light[J]. Sci China Chem, 2021, 64(5): 861−872. doi: 10.1007/s11426-020-9940-6 |
[41] | Gao C L, Wang L, Lin Y C, et al. Droplets manipulated on photothermal organogel surfaces[J]. Adv Funct Mater, 2018, 28(35): 1803072. doi: 10.1002/adfm.201803072 |
[42] | Smith J D, Dhiman R, Anand S, et al. Droplet mobility on lubricant-impregnated surfaces[J]. Soft Matter, 2013, 9(6): 1772−1780. doi: 10.1039/C2SM27032C |
[43] | Chaudhury M K, Whitesides G M. How to make water run uphill[J]. Science, 1992, 256(5063): 1539−1541. doi: 10.1126/science.256.5063.1539 |
[44] | Nikolov A D, Wasan D T, Chengaraa A, et al. Superspreading driven by Marangoni flow[J]. Adv Colloid Interface Sci, 2002, 96(1–3): 325−338. doi: 10.1016/S0001-8686(01)00087-2 |
[45] | Jiao Z Z, Zhou H, Han X C, et al. Photothermal responsive slippery surfaces based on laser-structured graphene@PVDF composites[J]. J Colloid Interface Sci, 2023, 629: 582−592. doi: 10.1016/J.JCIS.2022.08.153 |
[46] | Li Q, Wu D H, Guo Z G. Drop/bubble transportation and controllable manipulation on patterned slippery lubricant infused surfaces with tunable wettability[J]. Soft Matter, 2019, 15(34): 6803−6810. doi: 10.1039/C9SM01167F |
[47] | Chen C, Huang Z C, Jiao Y L, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage[J]. ACS Nano, 2019, 13(5): 5742−5752. doi: 10.1021/acsnano.9b01180 |
[48] | Li W, Lei Y P, Chen R, et al. Light-caused droplet bouncing from a cavity trap-assisted superhydrophobic surface[J]. Langmuir, 2020, 36(37): 11068−11078. doi: 10.1021/acs.langmuir.0c02062 |
[49] | Habault D, Zhang H J, Zhao Y. Light-triggered self-healing and shape-memory polymers[J]. Chem Soc Rev, 2013, 42(17): 7244−7256. doi: 10.1039/c3cs35489j |
[50] | Li Z, Zhang X Y, Wang S Q, et al. Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization[J]. Chem Sci, 2016, 7(7): 4741−4747. doi: 10.1039/C6SC00584E |
[51] | Puerto A, Méndez A, Arizmendi L, et al. Optoelectronic manipulation, trapping, splitting, and merging of water droplets and aqueous biodroplets based on the bulk photovoltaic effect[J]. Phys Rev Appl, 2020, 14(2): 024046. doi: 10.1103/PhysRevApplied.14.024046 |
[52] | Arizmendi L. Photonic applications of lithium niobate crystals[J]. Phys Status Solidi (A), 2004, 201(2): 253−283. doi: 10.1002/pssa.200303911 |
[53] | Yan W S, Zhao C P, Luo W Y, et al. Optically guided pyroelectric manipulation of water droplet on a superhydrophobic surface[J]. ACS Appl Mater Interfaces, 2021, 13(19): 23181−23190. doi: 10.1021/acsami.1c03407 |
[54] | Thio S K, Bae S, Park S Y. Plasmonic nanoparticle-enhanced optoelectrowetting (OEW) for effective light-driven droplet manipulation[J]. Sens Actuators B Chem, 2020, 308: 127704. doi: 10.1016/j.snb.2020.127704 |
[55] | Ashkin A, Dziedzic J M. Radiation pressure on a free liquid surface[J]. Phys Rev Lett, 1973, 30(4): 139−142. doi: 10.1103/PhysRevLett.30.139 |
[56] | Han K Y, Wang Z B, Heng L P, et al. Photothermal slippery surfaces towards spatial droplet manipulation[J]. J Mater Chem A, 2021, 9(31): 16974−16981. doi: 10.1039/D1TA04243B |
[57] | Paula K T, Silva K L C, Mattos A V A, et al. Controlling surface wettability in methacrylic copolymer containing azobenzene by fs-laser microstructuring[J]. Opt Mater, 2021, 116: 111083. doi: 10.1016/j.optmat.2021.111083 |
[58] | Milles S, Dahms J, Voisiat B, et al. Wetting properties of aluminium surface structures fabricated using direct laser interference patterning with picosecond and femtosecond pulses[J]. J Laser Micro/Nanoeng, 2021, 16(1): 74−79. doi: 10.2961/jlmn.2021.01.3001 |
[59] | Dou H Q, Liu H, Xu S Z, et al. Influence of laser Fluences and scan speeds on the morphologies and wetting properties of titanium alloy[J]. Optik, 2020, 224: 165443. doi: 10.1016/j.ijleo.2020.165443 |
[60] | 杨青, 成扬, 方政, 等. 仿生超滑表面的飞秒激光微纳制造及应用[J]. 光电工程, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326 Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-Nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326 |
[61] | Chiou P Y, Chang Z H, Wu M C. Droplet manipulation with light on optoelectrowetting device[J]. J Microelectromech Syst, 2008, 17(1): 133−138. doi: 10.1109/JMEMS.2007.904336 |
[62] | Venancio-Marques A, Baigl D. Digital optofluidics: LED-gated transport and fusion of microliter-sized organic droplets for chemical synthesis[J]. Langmuir, 2014, 30(15): 4207−4212. doi: 10.1021/la5001254 |
[63] | Lv J A, Liu Y Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619): 179−184. doi: 10.1038/nature19344 |
[64] | Zhao Y Z, Su Y L, Hou X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electron Adv, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008 |
[65] | 矫知真, 韩星尘, 周昊, 等. 光/电响应型超滑表面的激光加工制备[J]. 光电工程, 2022, 49(2): 210356. doi: 10.12086/oee.2022.210356 Jiao Z Z, Han X C, Zhou H, et al. Laser fabrication of light/voltage-responsive slippery liquid-infused porous substrate (SLIPS)[J]. Opto-Electron Eng, 2022, 49(2): 210356. doi: 10.12086/oee.2022.210356 |
[66] | Tang X, Wang L Q. Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces[J]. ACS Nano, 2018, 12(9): 8994−9004. doi: 10.1021/acsnano.8b02470 |
[67] | Huang T, Zhang L, Lao J C, et al. Reliable and low temperature actuation of water and oil slugs in Janus photothermal slippery tube[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17968−17974. doi: 10.1021/acsami.2c01205 |
[68] | Sun Q Q, Wang D H, Li Y N, et al. Surface charge printing for programmed droplet transport[J]. Nat Mater, 2019, 18(9): 936−941. doi: 10.1038/s41563-019-0440-2 |
[69] | Li J, Ha N S, Liu T L, et al. Ionic-surfactant-mediated electro-Dewetting for digital microfluidics[J]. Nature, 2019, 572(7770): 507−510. doi: 10.1038/s41586-019-1491-x |
[70] | Wang F, Liu M J, Liu C, et al. Light control of droplets on photo-induced charged surfaces[J]. Natl Sci Rev, 2023, 10(1): nwac164. doi: 10.1093/NSR/NWAC164 |
[71] | Ren H T, Jin H, Shu J, et al. Light-controlled versatile manipulation of liquid metal droplets: a gateway to future liquid robots[J]. Mater Horiz, 2021, 8(11): 3063−3071. doi: 10.1039/d1mh00647a |
[72] | Paven M, Mayama H, Sekido T, et al. Light-driven delivery and release of materials using liquid marbles[J]. Adv Funct Mater, 2016, 26(19): 3199−3206. doi: 10.1002/adfm.201600034 |
[73] | Nagy P T, Neitzel G P. Optical levitation and transport of Microdroplets: proof of concept[J]. Phys Fluids, 2008, 20(10): 101703. doi: 10.1063/1.3005394 |
[74] | Park S Y, Chiou P Y. Light-driven droplet manipulation technologies for lab-on-a-chip applications[J]. Adv OptoElectron, 2011, 2011: 909174. doi: 10.1155/2011/909174 |
[75] | Hu S W, Xu B Y, Ye W K, et al. Versatile microfluidic droplets array for bioanalysis[J]. ACS Appl Mater Interfaces, 2015, 7(1): 935−940. doi: 10.1021/am5075216 |
[76] | Wang F, Liu M J, Liu C, et al. Light-induced charged slippery surfaces[J]. Sci Adv, 2022, 8(27): eabp9369. doi: 10.1126/sciadv.abp9369 |
[77] | Coughlin S R. Thrombin Signalling and protease-activated receptors[J]. Nature, 2000, 407(6801): 258−264. doi: 10.1038/35025229 |
[78] | Hemker H C, Giesen P L, Ramjee M, et al. The thrombogram: monitoring thrombin generation in platelet-rich plasma[J]. Thromb Haemost, 2000, 83(4): 589−591. doi: 10.1055/s-0037-1613868 |
[79] | Thrivikraman G, Boda S K, Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective[J]. Biomaterials, 2018, 150: 60−86. doi: 10.1016/j.biomaterials.2017.10.003 |
[80] | McCaig C D, Song B, Rajnicek A M. Electrical dimensions in cell science[J]. J Cell Sci, 2009, 122(23): 4267−4276. doi: 10.1242/jcs.023564 |
[81] | Sun L Y, Bian F K, Wang Y, et al. Bioinspired programmable wettability arrays for droplets manipulation[J]. Proc Natl Acad Sci, 2020, 117(9): 4527−4532. doi: 10.1073/pnas.1921281117 |
[82] | Chen C, Huang Z C, Shi L A, et al. Remote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4-doped surfaces[J]. Adv Funct Mater, 2019, 29(40): 1904766. doi: 10.1002/adfm.201904766 |
[83] | Dai L G, Lin D J, Wang X D, et al. Integrated assembly and flexible movement of microparts using multifunctional bubble microrobots[J]. ACS Appl Mater Interfaces, 2020, 12(51): 57587−57597. doi: 10.1021/acsami.0c17518 |
[84] | Hu M, Wang F, Chen L, et al. Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface[J]. Nat Commun, 2022, 13(1): 5749. doi: 10.1038/s41467-022-33424-4 |
[85] | Čejková J, Banno T, Hanczyc M M, et al. Droplets as liquid robots[J]. Artif Life, 2017, 23(4): 528−549. doi: 10.1162/ARTL_a_00243 |
[86] | Baigl D. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives[J]. Lab Chip, 2012, 12(19): 3637−3653. doi: 10.1039/c2lc40596b |
[87] | Bormashenko E, Pogreb R, Bormashenko Y, et al. New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces[J]. Langmuir, 2008, 24(21): 12119−12122. doi: 10.1021/la802355y |
[88] | Dorvee J R, Sailor M J, Miskelly G M, et al. Digital microfluidics and delivery of molecular payloads with magnetic porous silicon chaperones[J]. Dalton Trans, 2008(6): 721−730. doi: 10.1039/b714594b |
[89] | Goss C H, Kaneko Y, Khuu Y et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections[J]. Sci Transl Med, 2018, 10(460): eaat7520. |
[90] | Fan X J, Dong X G, Karacakol A C, et al. Reconfigurable multifunctional ferrofluid droplet robots[J]. Proc Natl Acad Sci USA, 2020, 117(45): 27916−27926. doi: 10.1073/pnas.2016388117 |
[91] | Markvicka E J, Bartlett M D, Huang X N, et al. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics[J]. Nat Mater, 2018, 17(7): 618−624. doi: 10.1038/s41563-018-0084-7 |
[92] | Park S Y, Kalim S, Callahan C, et al. A light-induced dielectrophoretic droplet manipulation platform[J]. Lab Chip, 2009, 9(22): 3228−3235. doi: 10.1039/b909158k |
[93] | Park S Y, Teitell M A, Chiou E P Y. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns[J]. Lab Chip, 2010, 10(13): 1655−1661. doi: 10.1039/c001324b |
[94] | Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angew Chem Int Ed, 2006, 45(44): 7336−7356. doi: 10.1002/anie.200601554 |
[95] | Wu Y C, Feng J G, Gao H F, et al. Superwettability-based interfacial chemical reactions[J]. Adv Mater, 2019, 31(8): 1800718. doi: 10.1002/adma.201800718 |
[96] | Yang Z J, Wei J J, Sobolev Y I, et al. Systems of Mechanized and Reactive Droplets Powered by Multi-responsive Surfactants[J]. Nature, 2018, 553(7688): 313−318. doi: 10.1038/nature25137 |
[97] | Wang Y, Jin R N, Shen B Q, et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics[J]. Sci Adv, 2021, 7(24): eabe3839. doi: 10.1126/sciadv.abe3839 |
[98] | Mongera A, Rowghanian P, Gustafson H J, et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation[J]. Nature, 2018, 561(7723): 401−405. doi: 10.1038/s41586-018-0479-2 |
[99] | Bawazer L A, McNally C S, Empson C J, et al. Combinatorial microfluidic droplet engineering for biomimetic material synthesis[J]. Sci Adv, 2016, 2(10): e1600567. doi: 10.1126/sciadv.1600567 |
[100] | Sarkar M S K A, Donne S W, Evans G M. Hydrogen bubble flotation of silica[J]. Adv Powder Technol, 2010, 21(4): 412−418. doi: 10.1016/j.apt.2010.04.005 |
[101] | Warnier M J F, De Croon M H J M, Rebrov E V, et al. Pressure drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluid Nanofluid, 2010, 8(1): 33−45. doi: 10.1007/s10404-009-0448-z |
In nature, many creatures have evolved the ability of water droplets transportation or collection. Such as, lotus leaf has the ability of "out of the silt without fouling", the butterflies can fly in the rain for their special wing structures, cactus can use its spikes to collect droplets from the air, and desert animals like beetles and lizards can collect droplets through their shells and scales, and so on. In the past few decades, human beings imitated from nature, and many functional surfaces capable of manipulating droplets have been prepared and widely used in self-cleaning, anti-fog, anti-ice, water harvest, pollution control, and so on.
With time passes by, the "passive" droplet control of bionic wettability functional surface can no longer meet the demands of people in production. So, it is of great significance to develop functional surfaces which can actively control the droplets with the external simulations. Among the various wettability responsive droplet control methods, photo-responsive droplet manipulation has attracted great attention due to its advantages such as remote, non-contact, flexible control of the droplets, and strong anti-electromagnetic interference ability.
Despite long response time and low speed in the early stage of the photo-responsive droplet manipulation, in recent years, the technology of photo-responsive droplet manipulation functional surface has been developed dramatically. The droplet-controlled surfaces with fast response have been realized by wettability variation, mechanical deformation, phase transition, and charge distribution induced by light.
Such as, by using the photothermal effect of materials, the surface tension of the lubrication layer on the surface of materials can be changed, thus creating a wetting gradient force to push the droplets to move. Further, the sliding and pinning of the droplet can be controlled by the phase change of the paraffin layer on some functional surfaces. The pyroelectric crystal can generate the dielectric force field on its surface based on the photothermal effect, which could be applied to realize the lossless moving, merging, and splitting of the droplets. In addition, the wettability of the photovoltaic crystals could be changed with the irradiation of light, therefore, can be used to control the behavior of droplets. In this paper, the development of the photo-responsive functional surface in droplet manipulation was briefly reviewed. The mechanisms of the droplet manipulation with the functional surface were expatiated. The categories of functional surfaces were summarized, the characteristics of the structure were analyzed, and the corresponding implementation method was introduced in detail. In addition, the applications of the photo-responsive functional surface in droplet transportation, fusion, and segmentation were introduced. Finally, the future development and potential applications of the photo-responsive functional surface for droplet manipulation were prospected.
Development of photo-responsive droplet manipulation functional surface
Schematic of droplet transportation by wetting gradient force[41]. (a) Contact angle of equilibrium droplet; (b) Gradient force upon droplet induced by photo-thermal effect; (c) Stress analysis of droplet transportation
Mechanism of droplet manipulation on photo-thermal paraffin phase-change ultra-slippery surface[45]. (a) Stress analysis of droplet sliding; (b) Sliding of droplets in different paraffin phase
Photo-thermal bouncing of droplet on a cavity trap-assisted superhydrophobic surface[48]
Mechanism of wettability conversion in the photo-thermal shape-memory polymer functional surface[40]
Schematic of droplet manipulation on photo-pyroelectric functional surface[39]. (a) Generation of dielectric electrophoresis force; (b) Manipulation process
Mechanism of droplet manipulation on photo-voltaic functional surface[51]. (a) Sketch of the donor and acceptor levels of iron impurities and electron transport; (b) Schematic of directional photoexcitation of an Fe2+ impurity in the lithium niobate crystal, schematic of photo-voltaic electric field lines near the surface for (c) an x-cut crystal and (d) a z-cut crystal
Electric wettability translation modulated by photo-pyroelectric effect[53]
Structure and operation of photo-thermal droplet manipulation surfaces which are categorized as the (a) silicone oil infusion[37] , (b) paraffin infusion[38] , and (c) shape-memory[40]
Laser ablation machining of micro and nano functional surfaces. (a) Schematic of laser ablation[40] ; (b) Femto laser ablation[40]; (c) Picosecond laser ablation[50]; (d) Nanosecond laser ablation[47]
Reverse moulding of photo-thermal layer micro-nano functional structure with AAO[41]
Variation of contact and sliding angle of droplet on photo-thermal functional surface lubricant layers. (a) Non-phase transition lubricant layer[41]; (b) Phase transition lubricant layer[56]
Structure and operation of photo-electric droplet manipulation surfaces which are categorized as the (a) photo-pyroelectric dielectric electrophoresis force[39], (b) photo-voltaic dielectric electrophoresis force[51], (c) photo-pyroelectric wettability[53], and (d) photo-conductive electric wettability[61]
Image of micro-nano structures on superhydrophobic surface[39]
Basic functional units of photo-conductive electric wettability surface[61]
Transportation of different droplets by light with (a) lubricant infused functional surface[37], (b) photo-pyroelectric dielectric electrophoresis force functional surface[66], and (c) tunnel based on lubricant infused material[67]
Droplet merging and splitting with light[39]. (a) Merging of droplets; (b) Splitting of droplet; (c) Dispensing of droplet
Capture and release of droplets. (a) Selective releasing of droplet with light remote control[40]; (b) Capture and lossless transfer with optical pipet[53]
Manipulate a droplet to move a cargo, go through a tunnel, and clean the stains[70]
Motion of liquid metal “vehicle robot” in liquid condition with light manipulation [71]
Photo-responsive LMs "engine" [72]. (a) Motion of plastic boat with laser pumped “engine”; (b) Nonlinear movement of two-engine plastic boat pumped by sunlight
Cell culture chip based on photo-responsive droplet manipulation functional surface[38]
Photo-responsive micro-fluidic biological chip [76]. (a) Construction and operation of fluidic chip; (b) Thrombin culture and monitor experiment; (c) Cell in situ stimulation and detection experiment
Photo-responsive droplet fusion and reaction control of chemical reagents[62]
Photo-responsive automatic sampling chemical reaction chip[45]. (a) Photograph of the chip; (b)~(h) Automatic liquid feeding process based on optical response
Photo-responsive functional surface for CdS nanocrystal chemical synthesis[81]. (a) Schematic diagram of droplet manipulation;(b) Physical diagram and transmission electron microscopy image of CdS nanocrystals; (c) Parallel detection of multi samples
Under-water bubble manipulation based on photo-responsive droplet manipulation functional surface[82]
Microparts assembly by controllable bubbles based on photo-thermal functional surface[83]
Light navigated bubble bouncing within water based on thermally conductive surface[84]