Li A, Wu YF, Wang C et al. An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption. Opto-Electron Adv 7, 240099 (2024). doi: 10.29026/oea.2024.240099
Citation: Li A, Wu YF, Wang C et al. An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption. Opto-Electron Adv 7, 240099 (2024). doi: 10.29026/oea.2024.240099

Article Open Access

An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption

More Information
  • Despite the pressing demand for integrated spectrometers, a solution that deliver high-performance while being practically operated is still missing. Furthermore, current integrated spectrometers lack reconfigurability in their performance, which is highly desirable for dynamic working scenarios. This study presents a viable solution by demonstrating a user-friendly, reconfigurable spectrometer on silicon. At the core of this innovative spectrometer is a programmable photonic circuit capable of exhibiting diverse spectral responses, which can be significantly adjusted using on-chip phase shifters. The distinguishing feature of our spectrometer lies in its inverse design approach, facilitating effortless control and efficient manipulation of the programmable circuit. By eliminating the need for intricate configuration, our design reduces power consumption and mitigates control complexity. Additionally, our reconfigurable spectrometer offers two distinct operating conditions. In the Ultra-High-Performance mode, it is activated by multiple phase-shifters and achieves exceptional spectral resolution in the picometer scale while maintaining broad bandwidth. On the other hand, the Ease-of-Use mode further simplifies the control logic and reduces power consumption by actuating a single-phase shifter. Although this mode provides a slightly degraded spectral resolution of approximately 0.3 nm, it prioritizes ease of use and is well-suited for applications where ultra-fine spectral reconstruction is not a primary requirement.
  • 加载中
  • [1] Yang ZY, Albrow-Owen T, Cai WW et al. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722

    CrossRef Google Scholar

    [2] Li A, Yao CH, Xia JF et al. Advances in cost-effective integrated spectrometers. Light Sci Appl 11, 174 (2022). doi: 10.1038/s41377-022-00853-1

    CrossRef Google Scholar

    [3] Chen C, Li XY, Yang G et al. Computational hyperspectral devices based on quasi-random metasurface supercells. Nanoscale 15, 8854–8862 (2023). doi: 10.1039/D3NR00884C

    CrossRef Google Scholar

    [4] Seyringer D, Sagmeister M, Maese-Novo A et al. Compact and high-resolution 256-channel silicon nitride based AWG-spectrometer for OCT on a chip. In 2019 21st International Conference on Transparent Optical Networks (ICTON) 1–4 (IEEE, 2019); http://doi.org/10.1109/ICTON.2019.8840473.

    Google Scholar

    [5] Gatkine P, Veilleux S, Hu YW et al. Arrayed waveguide grating spectrometers for astronomical applications: new results. Opt Express 25, 17918–17935 (2017). doi: 10.1364/OE.25.017918

    CrossRef Google Scholar

    [6] Xia ZX, Eftekhar AA, Soltani M et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt Express 19, 12356–12364 (2011). doi: 10.1364/OE.19.012356

    CrossRef Google Scholar

    [7] Redding B, Liew SF, Sarma R et al. Compact spectrometer based on a disordered photonic chip. Nat Photonics 7, 746–751 (2013). doi: 10.1038/nphoton.2013.190

    CrossRef Google Scholar

    [8] Ma KQ, Chen KX, Zhu N et al. High-resolution compact on-chip spectrometer based on an echelle grating with densely packed waveguide array. IEEE Photonics J 11, 4900107 (2019).

    Google Scholar

    [9] Li A, Wang C, Bao FX et al. An integrated single-shot spectrometer with large bandwidth-resolution ratio and wide operation temperature range. PhotoniX 4, 29 (2023). doi: 10.1186/s43074-023-00109-0

    CrossRef Google Scholar

    [10] Li A, Fainman Y. On-chip spectrometers using stratified waveguide filters. Nat Commun 12, 2704 (2021). doi: 10.1038/s41467-021-23001-6

    CrossRef Google Scholar

    [11] Wang Z, Yi S, Chen A et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat Commun 10, 1020 (2019). doi: 10.1038/s41467-019-08994-5

    CrossRef Google Scholar

    [12] Redding B, Liew SF, Bromberg Y et al. Evanescently coupled multimode spiral spectrometer. Optica 3, 956–962 (2016). doi: 10.1364/OPTICA.3.000956

    CrossRef Google Scholar

    [13] Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [14] Zheng ZH, Zhu SK, Chen Y et al. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electron Sci 1, 220012 (2022). doi: 10.29026/oes.2022.220012

    CrossRef Google Scholar

    [15] Dong P, Qian W, Liang H et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt Express 18, 20298–20304 (2010). doi: 10.1364/OE.18.020298

    CrossRef Google Scholar

    [16] Xu HN, Qin Y, Hu GL et al. Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule. Light Sci Appl 12, 64 (2023). doi: 10.1038/s41377-023-01102-9

    CrossRef Google Scholar

    [17] Sun CL, Chen ZQ, Ye YT et al. Scalable on‐chip microdisk resonator spectrometer. Laser Photonics Rev 17, 2200792 (2023). doi: 10.1002/lpor.202200792

    CrossRef Google Scholar

    [18] Souza MCMM, Grieco A, Frateschi NC et al. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nat Commun 9, 665 (2018). doi: 10.1038/s41467-018-03004-6

    CrossRef Google Scholar

    [19] Li A, Fainman Y. Integrated silicon fourier transform spectrometer with broad bandwidth and ultra-high resolution. Laser Photonics Rev 15, 2000358 (2021). doi: 10.1002/lpor.202000358

    CrossRef Google Scholar

    [20] Zheng SN, Zou J, Cai H et al. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat Commun 10, 2349 (2019). doi: 10.1038/s41467-019-10282-1

    CrossRef Google Scholar

    [21] Kita DM, Miranda B, Favela D et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat Commun 9, 4405 (2018). doi: 10.1038/s41467-018-06773-2

    CrossRef Google Scholar

    [22] Yao CH, Chen MJ, Yan T et al. Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics. Light Sci Appl 12, 156 (2023). doi: 10.1038/s41377-023-01195-2

    CrossRef Google Scholar

    [23] Zhang L, Zhang M, Chen TN et al. Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators. Opto-Electron Adv 5, 210100 (2022). doi: 10.29026/oea.2022.210100

    CrossRef Google Scholar

    [24] Krishna RM, Eftekhar A, Lee S et al. Polysilicon micro-heaters for resonance tuning in CMOS photonics. Opt Lett 47, 1097–1100 (2022). doi: 10.1364/OL.441510

    CrossRef Google Scholar

    [25] Xu HN, Qin Y, Hu GL et al. Scalable integrated two-dimensional Fourier-transform spectrometry. Nat Commun 15, 436 (2024). doi: 10.1038/s41467-023-44518-y

    CrossRef Google Scholar

    [26] Li K, Yang M, Cai CK et al. Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array. PhotoniX 4, 14 (2023). doi: 10.1186/s43074-023-00093-5

    CrossRef Google Scholar

    [27] Gao L, Qu YR, Wang LH et al. Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics 11, 2507–2529 (2022). doi: 10.1515/nanoph-2021-0636

    CrossRef Google Scholar

    [28] Bogaerts W, Pérez D, Capmany J et al. Programmable photonic circuits. Nature 586, 207–216 (2020). doi: 10.1038/s41586-020-2764-0

    CrossRef Google Scholar

    [29] Xie YW, Hong SH, Yan H et al. Low-loss chip-scale programmable silicon photonic processor. Opto-Electron Adv 6, 220030 (2023). doi: 10.29026/oea.2023.220030

    CrossRef Google Scholar

    [30] Wang N, Yan W, Qu YR et al. Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX 2, 22 (2021). doi: 10.1186/s43074-021-00044-y

    CrossRef Google Scholar

    [31] Zagaglia L, Floris F, O'Brien PA. Experimental characterization of particle swarm optimized focusing non-uniform grating coupler for multiple SOI thicknesses. J Lightwave Technol 39, 5028–5034 (2021). doi: 10.1109/JLT.2021.3079575

    CrossRef Google Scholar

    [32] Fu PH, Chao CY, Huang DW. Ultracompact silicon waveguide bends designed using a particle swarm optimization algorithm. IEEE Photonics J 13, 6600509 (2021). doi: 10.1109/JPHOT.2020.3043828

    CrossRef Google Scholar

    [33] Chen WW, Li HX, Zhang BH et al. Silicon mode (de) multiplexer based on cascaded particle-swarm-optimized counter-tapered couplers. IEEE Photonics J 13, 6600210 (2021). doi: 10.1109/JPHOT.2020.3046361

    CrossRef Google Scholar

    [34] Mak JCC, Sideris C, Jeong J et al. Binary particle swarm optimized 2× 2 power splitters in a standard foundry silicon photonic platform. Opt Lett 41, 3868–3871 (2016). doi: 10.1364/OL.41.003868

    CrossRef Google Scholar

    [35] Abedi K, Mirjalili SM. Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm. Opt Commun 339, 7–13 (2015). doi: 10.1016/j.optcom.2014.11.035

    CrossRef Google Scholar

    [36] Djavid M, Mirtaheri SA, Abrishamian MS. Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. J Opt Soc Am B 26, 849–853 (2009). doi: 10.1364/JOSAB.26.000849

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint