Wu Z, Xu LM, Wang JD et al. Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes. Opto-Electron Adv 7, 240050 (2024). doi: 10.29026/oea.2024.240050
Citation: Wu Z, Xu LM, Wang JD et al. Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes. Opto-Electron Adv 7, 240050 (2024). doi: 10.29026/oea.2024.240050

Article Open Access

Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes

More Information
  • Ag-In-Ga-S (AIGS) quantum dots (QDs) have recently attracted great interests due to the outstanding optical properties and eco-friendly components, which are considered as an alternative replacement for toxic Pb- and Cd-based QDs. However, enormous attention has been paid to how to narrow their broadband spectra, ignoring the application advantages of the broadband emission. In this work, the AIGS QDs with controllable broad green-red dual-emission are first reported, which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals. Resultantly, the AIGS QDs exhibit broad dual-emission at green- and red- band evidenced by photoluminescence (PL) spectra, and the PL relative intensity and peak position can be finely adjusted. Furthermore, the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra. Accordingly, the AIGS QDs (the size consists of 17 nm and 3.7 nm) with 530 nm and 630 nm emission could successfully be synthesized at 220 °C. By combining the blue light-emitting diode (LED) chips and dual-emission AIGS QDs, the constructed white light-emitting devices (WLEDs) exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage (CIE) chromaticity coordinates of (0.33, 0.31), a correlated color temperature (CCT) of 5425 K, color rendering index (CRI) of 90, and luminous efficacy of radiation (LER) of 129 lm/W, which indicates that the AIGS QDs have huge potential for lighting applications.
  • 加载中
  • [1] Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115, 8706–8715 (1993). doi: 10.1021/ja00072a025

    CrossRef Google Scholar

    [2] Sun CJ, Jiang YZ, Zhang L et al. Toward the controlled synthesis of lead halide perovskite nanocrystals. ACS Nano 17, 17600–17609 (2023). doi: 10.1021/acsnano.3c05609

    CrossRef Google Scholar

    [3] Hamanaka Y, Ogawa T, Tsuzuki M et al. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J Phys Chem C 115, 1786–1792 (2011). doi: 10.1021/jp110409q

    CrossRef Google Scholar

    [4] Jain S, Bharti S, Bhullar GK et al. I-III-VI core/shell QDs: synthesis, characterizations and applications. J Lumin 219, 116912 (2020). doi: 10.1016/j.jlumin.2019.116912

    CrossRef Google Scholar

    [5] Zhang J, Zeng B, Ye HH et al. Facile synthesis of ternary AgInS2 nanowires and their self-assembly of fingerprint-like nanostructures. Chin Chem Lett 32, 1507–1510 (2021). doi: 10.1016/j.cclet.2020.09.050

    CrossRef Google Scholar

    [6] Azhniuk Y, Lopushanska B, Selyshchev O et al. Synthesis and optical properties of Ag-Ga-S quantum dots. Phys Status Solidi B 259, 2100349 (2022). doi: 10.1002/pssb.202100349

    CrossRef Google Scholar

    [7] Suzuki K, Kuzuya T, Hamanaka Y. Luminescence enhancement in CuInS2 nanoparticles through the selective passivation of nonradiative recombination sites by phosphine ligands. J Phys Chem C 126, 16751–16758 (2022). doi: 10.1021/acs.jpcc.2c05187

    CrossRef Google Scholar

    [8] Zang HD, Li HB, Makarov NS et al. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett 17, 1787–1795 (2017). doi: 10.1021/acs.nanolett.6b05118

    CrossRef Google Scholar

    [9] Uematsu T, Doi T, Torimoto T et al. Preparation of luminescent AgInS2-AgGaS2 solid solution nanoparticles and their optical properties. J Phys Chem Lett 1, 3283–3287 (2010). doi: 10.1021/jz101295w

    CrossRef Google Scholar

    [10] Kameyama T, Yamauchi H, Yamamoto T et al. Tailored photoluminescence properties of Ag(In, Ga)Se2 quantum dots for near-infrared in vivo imaging. ACS Appl Nano Mater 3, 3275–3287 (2020). doi: 10.1021/acsanm.9b02608

    CrossRef Google Scholar

    [11] Liu ZY, Guan ZY, Li X et al. Rational design and synthesis of highly luminescent multinary Cu-In-Zn-S semiconductor nanocrystals with tailored nanostructures. Adv Opt Mater 8, 1901555 (2020). doi: 10.1002/adom.201901555

    CrossRef Google Scholar

    [12] Rismaningsih N, Yamauchi H, Kameyama T et al. Controlling electronic energy structure of Ag-Ιn-Ga-S-Se quantum dots showing band-edge emission. Meet Abstr MA2020-02, 3121 (2020). doi: 10.1149/MA2020-02613121mtgabs

    CrossRef Google Scholar

    [13] Guan ZY, Ye HH, Lv PW et al. The formation process of five-component Cu-In-Zn-Se-S nanocrystals from ternary Cu–In–S and quaternary Cu-In-Se-S nanocrystals via gradually induced synthesis. J Mater Chem C 9, 8537–8544 (2021). doi: 10.1039/D1TC02108G

    CrossRef Google Scholar

    [14] Rismaningsih N, Yamauchi H, Kameyama T et al. Photoluminescence properties of quinary Ag-(In, Ga)-(S, Se) quantum dots with a gradient alloy structure for in vivo bioimaging. J Mater Chem C 9, 12791–12801 (2021). doi: 10.1039/D1TC02746H

    CrossRef Google Scholar

    [15] Kottayi R, Ilangovan V, Sittaramane R. Wide light-harvesting AgZnGaS3 quantum dots as an efficient sensitizer for solar cells. Opt Mater 134, 113036 (2022). doi: 10.1016/j.optmat.2022.113036

    CrossRef Google Scholar

    [16] Xie XL, Zhao JX, Lin OY et al. Narrow-bandwidth blue-emitting Ag-Ga-Zn-S semiconductor nanocrystals for quantum-dot light-emitting diodes. J Phys Chem Lett 13, 11857–11863 (2022). doi: 10.1021/acs.jpclett.2c03437

    CrossRef Google Scholar

    [17] Kameyama T, Kishi M, Miyamae C et al. Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag-In-S nanoparticles via Ga3+ doping. ACS Appl Mater Interfaces 10, 42844–42855 (2018). doi: 10.1021/acsami.8b15222

    CrossRef Google Scholar

    [18] Li JB, Wang LW. First principle study of core/shell structure quantum dots. Appl Phys Lett 84, 3648–3650 (2004). doi: 10.1063/1.1737470

    CrossRef Google Scholar

    [19] Reiss P, Protière M, Li L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009). doi: 10.1002/smll.200800841

    CrossRef Google Scholar

    [20] Raevskaya A, Lesnyak V, Haubold D et al. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots. J Phys Chem C 121, 9032–9042 (2017).

    Google Scholar

    [21] Uematsu T, Wajima K, Sharma DK et al. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells. NPG Asia Mater 10, 713–726 (2018). doi: 10.1038/s41427-018-0067-9

    CrossRef Google Scholar

    [22] Hoisang W, Uematsu T, Yamamoto T et al. Core nanoparticle engineering for narrower and more intense band-edge emission from AgInS2/GaSx core/shell quantum Dots. Nanomaterials 9, 1763 (2019). doi: 10.3390/nano9121763

    CrossRef Google Scholar

    [23] Bai TY, Wang XM, Dong YY et al. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap. Inorg Chem 59, 5975–5982 (2020). doi: 10.1021/acs.inorgchem.9b03768

    CrossRef Google Scholar

    [24] Motomura G, Ogura K, Iwasaki Y et al. Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Appl Phys Lett 117, 091101 (2020). doi: 10.1063/5.0018132

    CrossRef Google Scholar

    [25] Wei JH, Li F, Chang C et al. Synthesis of emission tunable AgInS2/ZnS quantum dots and application for light emitting diodes. J Phys Commun 4, 045016 (2020). doi: 10.1088/2399-6528/ab885a

    CrossRef Google Scholar

    [26] Li X, Tong X, Yue S et al. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy 89, 106392 (2021). doi: 10.1016/j.nanoen.2021.106392

    CrossRef Google Scholar

    [27] Lee SJ, Lee JE, Lee CJ et al. Design of Ag-Ga-S2-xSex-based eco-friendly core/shell quantum dots for narrow full-width at half-maximum using noble ZnGa2S4 shell material. J Korean Phys Soc 81, 935–941 (2022). doi: 10.1007/s40042-022-00649-x

    CrossRef Google Scholar

    [28] Lee HJ, Im S, Jung D et al. Coherent heteroepitaxial growth of I-III-VI2 Ag(In, Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators. Nat Commun 14, 3779 (2023). doi: 10.1038/s41467-023-39509-y

    CrossRef Google Scholar

    [29] Motomura G, Uematsu T, Kuwabata S et al. Quantum-dot light-emitting diodes exhibiting narrow-spectrum green electroluminescence by using Ag-In-Ga-S/GaS x quantum dotS. ACS Appl Mater Interfaces 15, 8336–8344 (2023). doi: 10.1021/acsami.2c21232

    CrossRef Google Scholar

    [30] Hoisang W, Uematsu T, Torimoto T et al. Luminescent quaternary Ag(In xGa1– x)S2/GaS y core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg Chem 60, 13101–13109 (2021). doi: 10.1021/acs.inorgchem.1c01513

    CrossRef Google Scholar

    [31] Hoisang W, Uematsu T, Torimoto T et al. Surface ligand chemistry on quaternary Ag(In xGa1− x)S2 semiconductor quantum dots for improving photoluminescence properties. Nanoscale Adv 4, 849–857 (2022). doi: 10.1039/D1NA00684C

    CrossRef Google Scholar

    [32] Uematsu T, Tepakidareekul M, Hirano T et al. Facile high-yield synthesis of Ag-In-Ga-S quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission. Chem Mater 35, 1094–1106 (2023). doi: 10.1021/acs.chemmater.2c03023

    CrossRef Google Scholar

    [33] Chen JW, Xiang HY, Wang J et al. Perovskite white light emitting diodes: progress, challenges, and opportunities. ACS Nano 15, 17150–17174 (2021). doi: 10.1021/acsnano.1c06849

    CrossRef Google Scholar

    [34] Huang GX, Huang Y, Liu ZL et al. White light-emitting diodes based on quaternary Ag-In-Ga-S quantum dots and their influences on melatonin suppression index. J Lumin 233, 117903 (2021). doi: 10.1016/j.jlumin.2021.117903

    CrossRef Google Scholar

    [35] Lu HX, Hu Z, Zhou WJ et al. Synthesis and structure design of I-III-VI quantum dots for white light-emitting diodes. Mater Chem Front 6, 418–429 (2022). doi: 10.1039/D1QM01452H

    CrossRef Google Scholar

    [36] Hu Z, Lu HX, Zhou WJ et al. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes. J Mater Sci Technol 134, 189–196 (2023). doi: 10.1016/j.jmst.2022.06.035

    CrossRef Google Scholar

    [37] Omata T, Nose K, Otsuka-Yao-Matsuo S. Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J Appl Phys 105, 073106 (2009). doi: 10.1063/1.3103768

    CrossRef Google Scholar

    [38] Zhu PF, Thapa S, Zhu HY et al. Solid-state white light-emitting diodes based on 3D-printed CsPbX3-resin color conversion layers. ACS Appl Electron Mater 5, 5316–5324 (2023). doi: 10.1021/acsaelm.2c01778

    CrossRef Google Scholar

    [39] Zhu PF, Thapa S, Zhu HY et al. Composition engineering of lead-free double perovskites towards efficient warm white light emission for health and well-being. J Alloys Compd 960, 170836 (2023). doi: 10.1016/j.jallcom.2023.170836

    CrossRef Google Scholar

    [40] Zhang KS, Fan WX, Yao TL et al. Polymer‐surface‐mediated mechanochemical reaction for rapid and scalable manufacture of perovskite QD phosphors. Adv Mater 36, 2310521 (2024). doi: 10.1002/adma.202310521

    CrossRef Google Scholar

    [41] Thanh NTK, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114, 7610–7630 (2014). doi: 10.1021/cr400544s

    CrossRef Google Scholar

    [42] Zhao HF, Zhu YC, Ye HY et al. Atomic‐scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy. Adv Mater 35, 2206911 (2023). doi: 10.1002/adma.202206911

    CrossRef Google Scholar

    [43] Sun GW, Liu XY, Liu Z et al. Emission wavelength tuning via competing lattice expansion and octahedral tilting for efficient red perovskite light‐emitting diodes. Adv Funct Mater 31, 2106691 (2021). doi: 10.1002/adfm.202106691

    CrossRef Google Scholar

    [44] Wang PH, Tang JL, Kang YB et al. Crystal structure and optical properties of GaAs nanowires. Acta Phys Sin 68, 087803 (2019). doi: 10.7498/aps.68.20182116

    CrossRef Google Scholar

    [45] Jiang B, Chen SL, Cui XL et al. Temperature-dependent photoluminescence in hybrid iodine-based perovskites film. Acta Phys Sin 68, 246801 (2019). doi: 10.7498/aps.68.20191238

    CrossRef Google Scholar

    [46] Huang HL, Yang YL, Qiao SY et al. Accommodative organoammonium cations in a‐sites of Sb-In halide perovskite derivatives for tailoring BroadBand photoluminescence with X‐ray scintillation and white‐light emission. Adv Funct Mater 34, 2309112 (2024). doi: 10.1002/adfm.202309112

    CrossRef Google Scholar

    [47] Zhou R, Sui LZ, Liu XB et al. Multiphoton excited singlet/triplet mixed self-trapped exciton emission. Nat Commun 14, 1310 (2023). doi: 10.1038/s41467-023-36958-3

    CrossRef Google Scholar

  • Supplementary information for Finely regulated luminescent Ag-In-Ga-S quantum dots with dual emission for white light-emitting diodes
    Supplementary movie 1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(3408) PDF downloads(577) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint